
8.1 (a) Let c ∈ IR. Then, for x 6= c,

f(x)− f(c)

x− c
=

x2 − c2

x− c
=

(x− c)(x + c)

x− c
= x+ c.

Hence,

lim
x→c

f(x) − f(c)

x− c
= lim

x→c
(x+ c) = 2c.

So the function f is differentiable at c. As c was arbitrarily chosen, f is differentiable everywhere and

f ′(x) = 2x.

As f(3) = 9 and f ′(3) = 6, the tangent has slope 6 and contains the point (3, 9). An equation of the

tangent is y − 9 = 6(x− 3) ⇐⇒ y = 6x− 9.

(c) Let c ∈ IR. Then, for x 6= c,
k(x) − k(c)

x− c
=

a− a

x− c
= 0.

Hence,

lim
x→c

k(x)− k(c)

x− c
= 0.

So the function k is differentiable at c. As c was arbitrarily chosen, k is differentiable everywhere and

k′(x) = 0.

As k(3) = a and k′(3) = 0, the tangent has slope 0 and contains the point (3, a). An equation of the

tangent is y = a.

(d) Let c 6= 0. Then, for u 6= c and u 6= 0,

h(u)− h(c)

y − c
=

2

3u
+A− 2

3c
−A

u− c
=

1

u− c
· 2c− 2u

3uc
= − 2

3uc
.

Hence,

lim
u→c

h(u)− h(c)

u− c
= lim

u→c
− 2

3uc
= − 2

3c2
.

So the function h is differentiable at c. As c 6= 0 was arbitrarily chosen, h is differentiable everywhere

(on its domain) and h′(u) = − 2

3u2
.

As h(3) = 2

9
+ A and h′(3) = − 2

27
, the tangent has slope − 2

27
and contains the point (3, 2

9
+ A). An

equation of the tangent is y − 2

9
−A = − 2

27
(x − 3) ⇐⇒ y = − 2

27
x+ 4

9
+A.

8.3 Let c > 0. Note that for x > 0 and x 6= c,

f(x)− f(c)

x− c
=

√
x−√

c

x− c
=

√
x−√

c

x− c

√
x+

√
c√

x+
√
c
=

x− c

(x− c)(
√
x+

√
c)

=
1√

x+
√
c
.

So

lim
x→c

f(x)− f(c)

x− c
= lim

x→c

1√
x+

√
c
=

1

2
√
c
.

Hence, the function f is differentiable at c and f ′(c) =
1

2
√
c
.

8.7 (a) For x > 0,

f ′(x) = 2x lnx+ x2 · 1
x
+ lnx+ x · 1

x
= x+ 1 + (2x+ 1) lnx.



(b) For x > 0,

f ′(x) = 2x
√
x+ x2 · 1

2
√
x
= 2x

√
x+ 1

2
x
√
x = 2 1

2
x
√
x.

(c) For any x,

f ′(x) = − cosx ex + (1− sinx)ex = (1− sinx− cosx)ex.

(d) For any x,

f ′(x) = cosx · cosx+ sinx · (− sinx) = cos2 x− sin2 x.

8.8 For n ∈ IN we introduce the statement P(n): the function fn is differentiable and
(

fn
)′
(x) = n

(

f(x)
)n−1

f ′(x) for every x ∈ I .

(1) The statement P(1) is true.

(2) Let k ∈ IN and assume that the statement P(k) is true.

Then, according to the Product Rule, for x ∈ I

(

fk+1
)′
(x) =

(

f · fk
)′
(x) = f ′(x) · fk(x) + f(x) ·

(

fk
)′
(x)

= f ′(x) · fk(x) + f(x) · k
(

f(x)
)k−1

f ′(x) = (k + 1)
(

f(x)
)k
f ′(x).

This proves that P(k + 1) is true.

According to the Principle of Induction, the statement P(n) is true for all n ∈ IN.

8.10 (a) For x > 0,

f ′(x) =

(

1 +
√
x
)

· 1√
x
− 2

√
x · 1

2
√
x

(

1 +
√
x
)2

=

1√
x
+ 1− 1

(

1 +
√
x
)2

=
1

√
x
(

1 +
√
x
)2

.

(b) For any x,

f ′(x) =

(

x2 + 1
)

· 2x− (x2 − 1) · 2x
(

x2 + 1
)2

=
2x3 + 2x− 2x3 + 2x

(

x2 + 1
)2

=
4x

(

x2 + 1
)2

.

(c) For any x,

f ′(x) =
(2 + cosx) · − cosx− (1− sinx) · − sinx

(2 + cosx)2
=

−2 cosx− cos2 x+ sinx− sin2 x

(2 + cosx)2

=
−2 cosx+ sinx− 1

(2 + cosx)2
.

(d) For x > 0,

f ′(x) =
ex · 1

x
− lnx · ex
(

ex
)2

=

1

x
− lnx

ex
=

1− x ln x

x ex
.

8.13 (a)

f ′(x) = g′
(

x+ g(1)
)

· 1 = g′
(

x+ g(1)
)

.

(b)

f ′(x) = g′
(

x · g(1)
)

· g(1).



(c)

f ′(x) = g′
(

x+ g(x)
)

·
(

1 + g′(x)
)

.

(d) As f(x) = g
(

(x+ 1)2
)

,

f ′(x) = g′
(

(x+ 1)2
)

· 2(x+ 1).

8.28 According to the Chain Rule for every x

(f ◦ g)′(x) = (g ◦ f)′(x) =⇒ f ′(g(x)) · g′(x) = g′(f(x)) · f ′(x) =⇒ f ′(x2) · 2x = 2f(x) · f ′(x).

In particular, for x = 1,

f ′(1) = f(1) · f ′(1) =⇒ f ′(1)[1− f(1)] = 0 =⇒ f(1) = 1 or f ′(1) = 0.

8.29 The function x 7→ x is differentiable on the interval (1,∞). According to the Arithmetic Rules for

differentiable functions, also the function x 7→ 4x is differentiable on the interval (1,∞).

The functions x 7→ x2 and x 7→ 2 are differentiable on the interval (−∞, 1). According to the Arithmetic

Rules for differentiable functions, also the function x 7→ 2x2 +2 is differentiable on the interval (−∞, 1).

Note that for x > 1
f(x) − f(1)

x− 1
=

4x− 4

x− 1
= 4.

So

lim
x↓1

f(x)− f(1)

x− 1
= lim

x↓1
4 = 4.

Furthermore, for x < 1

f(x)− f(1)

x− 1
=

2x2 + 2− 4

x− 1
=

2(x2 − 1)

x− 1
= 2(x+ 1).

So

lim
x↑1

f(x)− f(1)

x− 1
= lim

x↑1
2(x+ 1) = 4.

Hence, lim
x→1

f(x)− f(1)

x− 1
= 4. That is: f is differentiable at 1 and f ′(1) = 4.

Therefore,

f ′(x) =

{

4 if x ≥ 1

4x if x < 1.

8.30 In this case for x < 1

f(x)− f(1)

x− 1
=

2x2 − 4

x− 1
=

2(x2 − 1)− 2

x− 1
= 2(x+ 1)− 2

x− 1
.

In order to show that the limit lim
x↑1

[

2(x + 1) − 2

x− 1

]

doesn’t exist, we consider the sequence
(

xn

)∞

n=1

defined by xn = 1− 1

n
. Obviously, the sequence of images

(

2− 2

n
+ 2n

)∞

n=1

is unbounded, which implies the divergence of the sequence.

Hence, the function f is not differentiable at 1.



Alternative

As

lim
x↓1

g(x) = 4 6= 2 = lim
x↑1

g(x),

the function g is not continuous at 1. Hence, the function g is not differentiable at 1.

10.5 (a) For −1 ≤ x ≤ 2,

f(x) =
x+ 5
3
√
x2

= x
−

2

3 (x+ 5) = x

1

3 + 5x
−

2

3
.

Hence, the function F on [1, 2], defined by

F (x) = 3

4
x

4

3 + 15x
1

3 = 3

4
x 3
√
x+ 15 3

√
x,

is an antiderivative of the function f .

(b) For −1 ≤ x ≤ 2,

f(x) = 2
√
x+ cosx = 2x

1

2 + cosx.

Hence, the function F on [1, 2], defined by

F (x) = 4

3
x

3

2 + sinx = 4

3
x
√
x+ sinx,

is an antiderivative of the function f .

(c) For −1 ≤ x ≤ 2,

f(x) =
1

(1 + x)2
= (1 + x)−2.

Hence, the function F on [1, 2], defined by

F (x) = −(1 + x)−1 = − 1

1 + x
,

is an antiderivative of the function f .

(d) For −1 ≤ x ≤ 2,

f(x) =
√
2x+ 1 = (2x+ 1)

1

2
.

Hence, the function F on [1, 2], defined by

F (x) = 1

3
(2x+ 1)

3

2 = 1

2
· 2

3
(2x+ 1)

√
2x+ 1,

is an antiderivative of the function f .

(e) The function F on [1, 2], defined by

F (x) = − cosx2,

is an antiderivative of the function f .

(f) For −1 ≤ x ≤ 2,

f(x) =
(

x2 + 1
)2

= x4 + 2x2 + 1.

Hence, the function F on [1, 2], defined by

F (x) = 1

5
x5 + 2

3
x3 + x,

is an antiderivative of the function f .


