8.1 (a) Let $c \in \mathbb{R}$. Then, for $x \neq c$,

$$
\frac{f(x)-f(c)}{x-c}=\frac{x^{2}-c^{2}}{x-c}=\frac{(x-c)(x+c)}{x-c}=x+c
$$

Hence,

$$
\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=\lim _{x \rightarrow c}(x+c)=2 c
$$

So the function f is differentiable at c. As c was arbitrarily chosen, f is differentiable everywhere and $f^{\prime}(x)=2 x$.
As $f(3)=9$ and $f^{\prime}(3)=6$, the tangent has slope 6 and contains the point $(3,9)$. An equation of the tangent is $y-9=6(x-3) \Longleftrightarrow y=6 x-9$.
(c) Let $c \in \mathbb{R}$. Then, for $x \neq c$,

$$
\frac{k(x)-k(c)}{x-c}=\frac{a-a}{x-c}=0 .
$$

Hence,

$$
\lim _{x \rightarrow c} \frac{k(x)-k(c)}{x-c}=0
$$

So the function k is differentiable at c. As c was arbitrarily chosen, k is differentiable everywhere and $k^{\prime}(x)=0$.

As $k(3)=a$ and $k^{\prime}(3)=0$, the tangent has slope 0 and contains the point $(3, a)$. An equation of the tangent is $y=a$.
(d) Let $c \neq 0$. Then, for $u \neq c$ and $u \neq 0$,

$$
\frac{h(u)-h(c)}{y-c}=\frac{\frac{2}{3 u}+A-\frac{2}{3 c}-A}{u-c}=\frac{1}{u-c} \cdot \frac{2 c-2 u}{3 u c}=-\frac{2}{3 u c} .
$$

Hence,

$$
\lim _{u \rightarrow c} \frac{h(u)-h(c)}{u-c}=\lim _{u \rightarrow c}-\frac{2}{3 u c}=-\frac{2}{3 c^{2}} .
$$

So the function h is differentiable at c. As $c \neq 0$ was arbitrarily chosen, h is differentiable everywhere (on its domain) and $h^{\prime}(u)=-\frac{2}{3 u^{2}}$.
As $h(3)=\frac{2}{9}+A$ and $h^{\prime}(3)=-\frac{2}{27}$, the tangent has slope $-\frac{2}{27}$ and contains the point $\left(3, \frac{2}{9}+A\right)$. An equation of the tangent is $y-\frac{2}{9}-A=-\frac{2}{27}(x-3) \Longleftrightarrow y=-\frac{2}{27} x+\frac{4}{9}+A$.
8.3 Let $c>0$. Note that for $x>0$ and $x \neq c$,

$$
\frac{f(x)-f(c)}{x-c}=\frac{\sqrt{x}-\sqrt{c}}{x-c}=\frac{\sqrt{x}-\sqrt{c}}{x-c} \frac{\sqrt{x}+\sqrt{c}}{\sqrt{x}+\sqrt{c}}=\frac{x-c}{(x-c)(\sqrt{x}+\sqrt{c})}=\frac{1}{\sqrt{x}+\sqrt{c}}
$$

So

$$
\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=\lim _{x \rightarrow c} \frac{1}{\sqrt{x}+\sqrt{c}}=\frac{1}{2 \sqrt{c}}
$$

Hence, the function f is differentiable at c and $f^{\prime}(c)=\frac{1}{2 \sqrt{c}}$.
8.7 (a) For $x>0$,

$$
f^{\prime}(x)=2 x \ln x+x^{2} \cdot \frac{1}{x}+\ln x+x \cdot \frac{1}{x}=x+1+(2 x+1) \ln x
$$

(b) For $x>0$,

$$
f^{\prime}(x)=2 x \sqrt{x}+x^{2} \cdot \frac{1}{2 \sqrt{x}}=2 x \sqrt{x}+\frac{1}{2} x \sqrt{x}=2 \frac{1}{2} x \sqrt{x}
$$

(c) For any x,

$$
f^{\prime}(x)=-\cos x \mathrm{e}^{x}+(1-\sin x) \mathrm{e}^{x}=(1-\sin x-\cos x) \mathrm{e}^{x} .
$$

(d) For any x,

$$
f^{\prime}(x)=\cos x \cdot \cos x+\sin x \cdot(-\sin x)=\cos ^{2} x-\sin ^{2} x
$$

8.8 For $n \in \mathbb{N}$ we introduce the statement $\mathcal{P}(n)$: the function f^{n} is differentiable and $\left(f^{n}\right)^{\prime}(x)=n(f(x))^{n-1} f^{\prime}(x)$ for every $x \in I$.
(1) The statement $\mathcal{P}(1)$ is true.
(2) Let $k \in \mathbb{N}$ and assume that the statement $\mathcal{P}(k)$ is true.

Then, according to the Product Rule, for $x \in I$

$$
\begin{aligned}
\left(f^{k+1}\right)^{\prime}(x) & =\left(f \cdot f^{k}\right)^{\prime}(x)=f^{\prime}(x) \cdot f^{k}(x)+f(x) \cdot\left(f^{k}\right)^{\prime}(x) \\
& =f^{\prime}(x) \cdot f^{k}(x)+f(x) \cdot k(f(x))^{k-1} f^{\prime}(x)=(k+1)(f(x))^{k} f^{\prime}(x)
\end{aligned}
$$

This proves that $\mathcal{P}(k+1)$ is true.
According to the Principle of Induction, the statement $\mathcal{P}(n)$ is true for all $n \in \mathbb{N}$.
8.10 (a) For $x>0$,

$$
f^{\prime}(x)=\frac{(1+\sqrt{x}) \cdot \frac{1}{\sqrt{x}}-2 \sqrt{x} \cdot \frac{1}{2 \sqrt{x}}}{(1+\sqrt{x})^{2}}=\frac{\frac{1}{\sqrt{x}}+1-1}{(1+\sqrt{x})^{2}}=\frac{1}{\sqrt{x}(1+\sqrt{x})^{2}}
$$

(b) For any x,

$$
f^{\prime}(x)=\frac{\left(x^{2}+1\right) \cdot 2 x-\left(x^{2}-1\right) \cdot 2 x}{\left(x^{2}+1\right)^{2}}=\frac{2 x^{3}+2 x-2 x^{3}+2 x}{\left(x^{2}+1\right)^{2}}=\frac{4 x}{\left(x^{2}+1\right)^{2}} .
$$

(c) For any x,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(2+\cos x) \cdot-\cos x-(1-\sin x) \cdot-\sin x}{(2+\cos x)^{2}}=\frac{-2 \cos x-\cos ^{2} x+\sin x-\sin ^{2} x}{(2+\cos x)^{2}} \\
& =\frac{-2 \cos x+\sin x-1}{(2+\cos x)^{2}}
\end{aligned}
$$

(d) For $x>0$,

$$
f^{\prime}(x)=\frac{\mathrm{e}^{x} \cdot \frac{1}{x}-\ln x \cdot \mathrm{e}^{x}}{\left(\mathrm{e}^{x}\right)^{2}}=\frac{\frac{1}{x}-\ln x}{\mathrm{e}^{x}}=\frac{1-x \ln x}{x \mathrm{e}^{x}} .
$$

8.13 (a)

$$
f^{\prime}(x)=g^{\prime}(x+g(1)) \cdot 1=g^{\prime}(x+g(1))
$$

(b)

$$
f^{\prime}(x)=g^{\prime}(x \cdot g(1)) \cdot g(1) .
$$

(c)

$$
f^{\prime}(x)=g^{\prime}(x+g(x)) \cdot\left(1+g^{\prime}(x)\right) .
$$

(d) As $f(x)=g\left((x+1)^{2}\right)$,

$$
f^{\prime}(x)=g^{\prime}\left((x+1)^{2}\right) \cdot 2(x+1) .
$$

8.28 According to the Chain Rule for every x

$$
(f \circ g)^{\prime}(x)=(g \circ f)^{\prime}(x) \Longrightarrow f^{\prime}(g(x)) \cdot g^{\prime}(x)=g^{\prime}(f(x)) \cdot f^{\prime}(x) \Longrightarrow f^{\prime}\left(x^{2}\right) \cdot 2 x=2 f(x) \cdot f^{\prime}(x) .
$$

In particular, for $x=1$,

$$
f^{\prime}(1)=f(1) \cdot f^{\prime}(1) \Longrightarrow f^{\prime}(1)[1-f(1)]=0 \Longrightarrow f(1)=1 \quad \text { or } \quad f^{\prime}(1)=0 .
$$

8.29 The function $x \mapsto x$ is differentiable on the interval $(1, \infty)$. According to the Arithmetic Rules for differentiable functions, also the function $x \mapsto 4 x$ is differentiable on the interval $(1, \infty)$.
The functions $x \mapsto x^{2}$ and $x \mapsto 2$ are differentiable on the interval $(-\infty, 1)$. According to the Arithmetic Rules for differentiable functions, also the function $x \mapsto 2 x^{2}+2$ is differentiable on the interval $(-\infty, 1)$.

Note that for $x>1$

$$
\frac{f(x)-f(1)}{x-1}=\frac{4 x-4}{x-1}=4 .
$$

So

$$
\lim _{x \downarrow 1} \frac{f(x)-f(1)}{x-1}=\lim _{x \downarrow 1} 4=4 \text {. }
$$

Furthermore, for $x<1$

$$
\frac{f(x)-f(1)}{x-1}=\frac{2 x^{2}+2-4}{x-1}=\frac{2\left(x^{2}-1\right)}{x-1}=2(x+1) .
$$

So

$$
\lim _{x \uparrow 1} \frac{f(x)-f(1)}{x-1}=\lim _{x \uparrow 1} 2(x+1)=4 .
$$

Hence, $\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=4$. That is: f is differentiable at 1 and $f^{\prime}(1)=4$.
Therefore,

$$
f^{\prime}(x)= \begin{cases}4 & \text { if } x \geq 1 \\ 4 x & \text { if } x<1 .\end{cases}
$$

8.30 In this case for $x<1$

$$
\frac{f(x)-f(1)}{x-1}=\frac{2 x^{2}-4}{x-1}=\frac{2\left(x^{2}-1\right)-2}{x-1}=2(x+1)-\frac{2}{x-1} .
$$

In order to show that the limit $\lim _{x \uparrow 1}\left[2(x+1)-\frac{2}{x-1}\right]$ doesn't exist, we consider the sequence $\left(x_{n}\right)_{n=1}^{\infty}$ defined by $x_{n}=1-\frac{1}{n}$. Obviously, the sequence of images

$$
\left(2-\frac{2}{n}+2 n\right)_{n=1}^{\infty}
$$

is unbounded, which implies the divergence of the sequence.
Hence, the function f is not differentiable at 1 .

Alternative

As

$$
\lim _{x \downarrow 1} g(x)=4 \neq 2=\lim _{x \uparrow 1} g(x),
$$

the function g is not continuous at 1 . Hence, the function g is not differentiable at 1 .
10.5 (a) For $-1 \leq x \leq 2$,

$$
f(x)=\frac{x+5}{\sqrt[3]{x^{2}}}=x^{-\frac{2}{3}}(x+5)=x^{\frac{1}{3}}+5 x^{-\frac{2}{3}}
$$

Hence, the function F on [1, 2], defined by

$$
F(x)=\frac{3}{4} x^{\frac{4}{3}}+15 x^{\frac{1}{3}}=\frac{3}{4} x \sqrt[3]{x}+15 \sqrt[3]{x}
$$

is an antiderivative of the function f.
(b) For $-1 \leq x \leq 2$,

$$
f(x)=2 \sqrt{x}+\cos x=2 x^{\frac{1}{2}}+\cos x .
$$

Hence, the function F on $[1,2]$, defined by

$$
F(x)=\frac{4}{3} x^{\frac{3}{2}}+\sin x=\frac{4}{3} x \sqrt{x}+\sin x
$$

is an antiderivative of the function f.
(c) For $-1 \leq x \leq 2$,

$$
f(x)=\frac{1}{(1+x)^{2}}=(1+x)^{-2}
$$

Hence, the function F on [1, 2], defined by

$$
F(x)=-(1+x)^{-1}=-\frac{1}{1+x},
$$

is an antiderivative of the function f.
(d) For $-1 \leq x \leq 2$,

$$
f(x)=\sqrt{2 x+1}=(2 x+1)^{\frac{1}{2}}
$$

Hence, the function F on [1, 2], defined by

$$
F(x)=\frac{1}{3}(2 x+1)^{\frac{3}{2}}=\frac{1}{2} \cdot \frac{2}{3}(2 x+1) \sqrt{2 x+1}
$$

is an antiderivative of the function f.
(e) The function F on $[1,2]$, defined by

$$
F(x)=-\cos x^{2},
$$

is an antiderivative of the function f.
(f) For $-1 \leq x \leq 2$,

$$
f(x)=\left(x^{2}+1\right)^{2}=x^{4}+2 x^{2}+1
$$

Hence, the function F on $[1,2]$, defined by

$$
F(x)=\frac{1}{5} x^{5}+\frac{2}{3} x^{3}+x,
$$

is an antiderivative of the function f.

