8.1 (b) Let $c \in \mathbb{R}$. Note that for $x \neq c$,

$$
\frac{g(x)-g(c)}{x-c}=\frac{x^{3}-c^{3}}{x-c}=\frac{(x-c)\left(x^{2}+c x+c^{2}\right)}{x-c}=x^{2}+c x+c^{2}
$$

which implies that

$$
\lim _{x \rightarrow c} \frac{g(x)-g(c)}{x-c}=\lim _{x \rightarrow c}\left[x^{2}+c x+c^{2}\right]=3 c^{2}
$$

So the function g is differentiable at c. As c was arbitrarily chosen, g is differentiable everywhere and $g^{\prime}(x)=3 x^{2}$.
As $g(3)=27$ and $g^{\prime}(3)=27$, the tangent has slope 27 and contains the point (3,27). An equation of the tangent is $y-27=27(x-3) \Longleftrightarrow y=27 x-54$.
8.2 Note that for $x \neq 0$

$$
\frac{g(x)-g(0)}{x}=\frac{x|x|-0}{x}=|x|,
$$

which implies that

$$
\lim _{x \rightarrow 0} \frac{g(x)-g(0)}{x}=\lim _{x \rightarrow 0}|x|=0
$$

Hence, the function g is differentiable at 0 and $g^{\prime}(0)=0$.
8.4 For $x \neq 0$,

$$
\frac{f(x)-f(0)}{x}=\left\{\begin{array}{ll}
\frac{x}{x} & \text { if } x>0 \\
\frac{x^{2}}{x} & \text { if } x<0
\end{array}= \begin{cases}1 & \text { if } x>0 \\
x & \text { if } x<0\end{cases}\right.
$$

Apparently,

$$
\begin{aligned}
& \lim _{x \downarrow 0} \frac{f(x)-f(0)}{x}=1 \\
& \lim _{x \uparrow 0} \frac{f(x)-f(0)}{x}=0,
\end{aligned}
$$

which implies that the limit $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}$ doesn't exist, that is: the function f is not differentiable at 0 .
8.5 (a) Let $c>1$. For $x \neq c($ and $x>1)$,

$$
\frac{f(x)-f(c)}{x-c}=\frac{x^{2}-2-\left(c^{2}-2\right)}{x-c}=\frac{x^{2}-c^{2}}{x-c}=x+c,
$$

so that

$$
\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=\lim _{x \rightarrow c}(x+c)=2 c .
$$

Similarly, for $c<1$,

$$
\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=2 c
$$

This proves that the function f is differentiable at c for any $c \neq 1$. For $x \neq 1, f^{\prime}(x)=2 x$.
(b) Obviously,

$$
\lim _{x \rightarrow 1} f^{\prime}(x)=\lim _{x \rightarrow 1} 2 x=2
$$

(c) The statement is false: see part (d).
(d) Obviously, the function is not continuous at 1:
whereas

$$
\begin{aligned}
& \lim _{x \downarrow 1} f(x)=\lim _{x \downarrow 1}\left(x^{2}-2\right)=-1, \\
& \lim _{x \uparrow 1} f(x)=\lim _{x \uparrow 1} x=1 .
\end{aligned}
$$

So, according to Theorem 1, the function is not differentiable at 1 .
8.6 Let $c \in I$. Then for $x \neq c$,

$$
\frac{(5 f)(x)-(5 f)(c)}{x-c}=\frac{5 f(x)-5 f(c)}{x-c}=5 \frac{f(x)-f(c)}{x-c} .
$$

Hence,

$$
\lim _{x \rightarrow c} \frac{(5 f)(x)-(5 f)(c)}{x-c}=\lim _{x \rightarrow c} 5 \frac{f(x)-f(c)}{x-c}=5 \lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=5 f^{\prime}(c) .
$$

So the function $5 f$ is differentiable at c and $(5 f)^{\prime}(c)=5 f^{\prime}(c)$.
As c was arbitrarily chosen, $5 f$ is differentiable and $(5 f)^{\prime}(x)=5 f^{\prime}(x)$.
8.9 Let $n \in \mathbb{N}$. Note that for $x>0$,

$$
g(x)=\frac{1}{f(x)}
$$

where $f(x)=x^{n}$. By Example 10, the function f is differentiable and $f^{\prime}(x)=n x^{n-1}$. Furthermore, $f(x) \neq 0$ for all $x>0$.
Then Theorem 4 implies that the function g is differentiable and that for $c>0$

$$
g^{\prime}(c)=\left(\frac{1}{f}\right)^{\prime}(c)=-\frac{f^{\prime}(c)}{f(c)^{2}}=-\frac{n c^{n-1}}{\left[c^{n}\right]^{2}}=-\frac{n c^{n-1}}{c^{2 n}}=-\frac{n}{c^{n+1}}
$$

8.11 (a) If $g(x)=x+2 x^{2}$ and $f(t)=3 \sin t$, then

$$
h(x)=3 \sin \left(x+2 x^{2}\right)=3 \sin g(x)=f(g(x))=(f \circ g)(x) .
$$

So $h=f \circ g$.
(b) If $g(x)=\sin x$ and $f(t)=2+t^{2}$, then

$$
h(x)=2+\sin ^{2} x=2+g(x)^{2}=f(g(x))=(f \circ g)(x) .
$$

So $h=f \circ g$.
(c) If $g(x)=1-x^{2}$ and $f(t)=\mathrm{e}^{t}$, then

$$
h(x)=\mathrm{e}^{1-x^{2}}=\mathrm{e}^{g(x)}=f(g(x))=(f \circ g)(x) .
$$

So $h=f \circ g$.
(d) If $g(x)=\sin x$ and $f(t)=\sqrt{t}$, then

$$
h(x)=\sqrt{\sin x}=\sqrt{g(x)}=f(g(x))=(f \circ g)(x)
$$

So $h=f \circ g$.
8.12 (a) For any x,

$$
h^{\prime}(x)=3 \cos \left(x+2 x^{2}\right) \cdot(1+4 x)=3(1+4 x) \cos \left(x+2 x^{2}\right)
$$

(b) For any x,

$$
h^{\prime}(x)=2 \sin x \cdot \cos x=2 \sin x \cos x
$$

(c) For any x,

$$
h^{\prime}(x)=\mathrm{e}^{1-x^{2}} \cdot(-2 x)=-2 x \mathrm{e}^{1-x^{2}}
$$

(d) For any x satisfying $\sin x>0$,

$$
h^{\prime}(x)=\frac{1}{2 \sqrt{\sin x}} \cdot \cos x=\frac{\cos x}{2 \sqrt{\sin x}} .
$$

8.27 We know that

$$
\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=f^{\prime}(c)>0
$$

According to Exercise 5.27, a $\delta>0$ exist such that

$$
\frac{f(x)-f(c)}{x-c}>0
$$

for all $x \neq c$ in the interval $(c-\delta, c+\delta)$.
Then for any $x \in(c, c+\delta), x-c>0$, so that $f(x)-f(c)>0 \Longleftrightarrow f(x)>f(c)$.
8.31 (a) According to the Product Rule and the Chain Rule, for $x \neq 0$

$$
f^{\prime}(x)=\frac{1}{x^{2}} \cdot 2 x \cdot \mathrm{e}^{x^{2}}+\ln \left(x^{2}\right) \cdot \mathrm{e}^{x^{2}} \cdot 2 x=\mathrm{e}^{x^{2}}\left[\frac{2}{x}+2 x \ln \left(x^{2}\right)\right]
$$

(b) According to the Quotient Rule and the Chain Rule, for $x \notin[-1,1]$,

$$
f^{\prime}(x)=\frac{1}{\frac{x^{2}-1}{x^{2}+1}} \cdot \frac{\left(x^{2}+1\right) \cdot 2 x-\left(x^{2}-1\right) \cdot 2 x}{\left(x^{2}+1\right)^{2}}=\frac{x^{2}+1}{x^{2}-1} \cdot \frac{4 x}{\left(x^{2}+1\right)^{2}}=\frac{4 x}{\left(x^{2}-1\right)\left(x^{2}+1\right)}=\frac{4 x}{x^{4}-1}
$$

(c) According to the Quotient Rule and the Chain Rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left[\mathrm{e}^{x}+\mathrm{e}^{-x}\right] \cdot\left[\mathrm{e}^{x}-\mathrm{e}^{-x} \cdot-1\right]-\left[\mathrm{e}^{x}-\mathrm{e}^{-x}\right] \cdot\left[\mathrm{e}^{x}+\mathrm{e}^{-x} \cdot-1\right]}{\left[\mathrm{e}^{x}+\mathrm{e}^{-x}\right]^{2}}=\frac{\left[\mathrm{e}^{x}+\mathrm{e}^{-x}\right]^{2}-\left[\mathrm{e}^{x}-\mathrm{e}^{-x}\right]^{2}}{\left[\mathrm{e}^{x}+\mathrm{e}^{-x}\right]^{2}} \\
& =\frac{\mathrm{e}^{2 x}+2 \mathrm{e}^{x} \mathrm{e}^{-x}+\mathrm{e}^{-2 x}-\mathrm{e}^{2 x}+2 \mathrm{e}^{x} \mathrm{e}^{-x}-\mathrm{e}^{-2 x}}{\left[\mathrm{e}^{x}+\mathrm{e}^{-x}\right]^{2}}=\frac{4}{\left[\mathrm{e}^{x}+\mathrm{e}^{-x}\right]^{2}} .
\end{aligned}
$$

(d) According to the Quotient Rule and the Chain Rule,

$$
\begin{aligned}
f^{\prime}(x) & =2\left(\frac{\sin x^{2}}{\cos x^{2}}\right) \cdot \frac{\cos x^{2} \cdot \cos x^{2} \cdot 2 x-\sin x^{2} \cdot-\sin x^{2} \cdot 2 x}{\cos ^{2} x^{2}} \\
& =\frac{2 \sin x^{2}}{\cos x^{2}} \cdot \frac{2 x\left[\cos ^{2} x^{2}+\sin ^{2} x^{2}\right]}{\cos ^{2} x^{2}}=\frac{4 x \sin x^{2}}{\left(\cos x^{2}\right)^{3}} .
\end{aligned}
$$

