
8.15 Note that for x > 0

f(x) = 3 3
√
x
(√

x+ x3
)

= 3x
1

3
(

x

1

2 + x3
)

= 3x
5

6 + 3x
10

3
.

According to Exercise 14 and the Arithmetic Rules for differentiable functions, the function f is differ-

entiable and for x > 0

f ′(x) = 5

2
x

−

1

6 + 10x
7

3 =
5

2 6
√
x
+ 10x2 3

√
x.

8.16 We introduce the functions f on (0,∞), defined by

f(x) = 3
√
x

and the function g on (−1,∞), defined by

g(x) = 1 + x|x|.

Then h(x) = f
(

g(x)
)

for all x > −1. In other words: the function h is the composition of the functions

f and g. Note that f is differentiable on the interval (0,∞) and that g
(

(−1,∞)
)

= (0,∞). So if we can

prove that the function g is differentiable on the interval (−1,∞), then the function h is differentiable on

the interval (−1,∞).

In order to prove that the function g is differentiable we note that

g(x) =

{

1− x2 if −1 < x < 0

1 + x2 if x ≥ 0.

In view of the Arithmetic Rules for differentiable functions, the function g is differentiable for x > −1

and x 6= 0. For x 6= 0
g(x)− g(0)

x
=

g(x)− 1

x
=

1 + x|x| − 1

x
= |x|.

Hence,

lim
x→0

g(x)− g(0)

x
= lim

x→0
|x| = 0.

This means that the function g is also differentiable at 0 and that g′(0) = 0.

So the function g is differentiable and

g′(x) =







−2x if −1 < x < 0

0 if x = 0

2x if x > 0

= 2|x|.

According to the Chain Rule,

h′(x) = f ′
(

g(x)
)

· g′(x) = 2

3
(1 + x|x|)

− 2

3 |x|.



8.18 The function cos restricted to the interval [0, π] is strictly decreasing and therefore invertible.

According to the Inverse Function Theorem, the function arccos is differentiable on (−1, 1) and for

y ∈ (−1, 1),

arccos′(y) =
1

cos′
(

arccos(y)
) =

1

− sin
(

arccos(y)
) = − 1

√

1− cos2
(

arccos(y)
)

= − 1
√

1− y2
.

8.19 Since, for x > 0,

h(x) = 4x
3

2 = 4x
√
x,

the function h is the product of the functions f and g on (0,∞) defined by f(x) = 4x and g(x) =
√
x,

respectively. Since the functions f and g are differentiable, the Product Rule implies that the function h

is differentiable. Furthermore, for x > 0,

h′(x) = f ′(x) · g(x) + f(x) · g′(x) = 4
√
x+ 4x · 1

2
√
x
= 6

√
x.

This implies that for all x > 0,

Eh(x) = h′(x) · x

h(x)
= 6

√
x · x

4x
√
x
= 3

2
.

8.21 (a) Since, for p > 0, r(p) = p · d(p),

r′(p) = d(p) + pd′(p) = d(p) + d′(p)
p

d(p)
· d(p) = d(p) [1 +Ed(p)] .

(b) By using part (a), it follows that

Er(p) = r′(p) · p

r(p)
= d(p) [1 +Ed(p)] ·

p

p · d(p) = 1 +Ed(p).

8.22 (a) For −1 < u < 1,

h′(u) = (10A)2u ln(10A) · 2 · 3

√

1− u2 + (10A)2u
1

3 3

√

(1− u2)2
· (−2u)

= (10A)2u
6 ln(10A)(1− u2)− 2u

3 3

√

(1− u2)2
.

(b) For all k 6= 2,

G′(k) =

(2k − 4)
1

2
√

(bk)2 + 3c2
· 2b2k −

√

(bk)2 + 3c2 · 2

(2k − 4)2

=
(2k − 4)b2k − 2

[

(bk)2 + 3c2
]

(2k − 4)2
√

(bk)2 + 3c2

=
2b2k2 − 4b2k − 2(bk)2 − 6c2

(2k − 4)2
√

(bk)2 + 3c2
=

−4b2k − 6c2

(2k − 4)2
√

(bk)2 + 3c2
.



(c) For all u,

f ′(u) =
1

1 +
1

(1 + u2)2

· −2u

(1 + u2)2
=

−2u

(1 + u2)2 + 1
.

(d)

C ′(h) =
1

1 + tan2 h
· 2 tanh · 1

cos2 h
=

2 tanh

cos2 h+ sin2 h
= 2 tanh.

8.23 As f(1) = 5 = f(−1), the function f is not invertible!

10.1 (a) Take a = 0, b = 1, f(t) =
1√
t
and ϕ(x) = 3x2 + 1.

(b) An antiderivative of f is the function F defined by F (t) = 2
√
t.

(c) As ϕ′(x) = 2, we obtain

∫ 1

0

x√
3x2 + 1

dx = 1

6

∫ 1

0

1√
3x2 + 1

· 6x dx = 1

6

∫ 1

0

1
√

ϕ(x)
· ϕ′(x) dx

= 1

3

[

√

ϕ(x)
]1

0

= 1

3

[√
3x2 + 1

]1

0

= 1

3
.

11.2 (a) Take a = 0, b = 2, f(t) =
1

t
and ϕ(x) = 2x+ 1.

(b) An antiderivative of f is the function F defined by F (t) = ln t.

(c) As ϕ′(x) = 2, we obtain

∫ 2

0

1

2x+ 1
dx = 1

2

∫ 2

0

1

2x+ 1
· 2 dx = 1

2

∫ 2

0

1

ϕ(x)
· ϕ′(x) dx

= 1

2

[

lnϕ(x)
]2

0

= 1

2

[

ln(2x+ 1)
]2

0

= 1

2
ln 5.

11.4 (a) In order to evaluate the integral
∫ 1

−1

x2

√
x3 + 9

dx

we introduce ϕ(x) = x3 + 9. As ϕ(−1) = 8 and ϕ(1) = 10, the Method of Substitution leads to

∫ 1

−1

x2

√
x3 + 9

dx =

∫ 1

−1

1

3
√
x3 + 9

· 3x2 dx =

∫ 1

−1

1

3
√

ϕ(x)
· ϕ′(x) dx

=

∫

10

8

1

3
t−

1

2 dt =
[

2

3
t
1

2

]10

8

= 2

3

√
10− 2

3

√
8.

(b) In order to evaluate the integral
∫

ln 2

0

ex
(

1 + ex
)

dx

we introduce ϕ(x) = 1 + ex. As ϕ(0) = 2 and ϕ(ln 2) = 3, the Method of Substitution leads to

∫

ln 2

0

ex
(

1 + ex
)

dx =

∫

ln 2

0

(

1 + ex
)

· ex dx =

∫

ln 2

0

ϕ(x) · ϕ′(x) dx

=

∫ 3

2

t dt =
[

1

2
t2
]3

2

= 4 1

2
− 2 = 2 1

2
.


