8.15 Note that for $x>0$

$$
f(x)=3 \sqrt[3]{x}\left(\sqrt{x}+x^{3}\right)=3 x^{\frac{1}{3}}\left(x^{\frac{1}{2}}+x^{3}\right)=3 x^{\frac{5}{6}}+3 x^{\frac{10}{3}}
$$

According to Exercise 14 and the Arithmetic Rules for differentiable functions, the function f is differentiable and for $x>0$

$$
f^{\prime}(x)=\frac{5}{2} x^{-\frac{1}{6}}+10 x^{\frac{7}{3}}=\frac{5}{2 \sqrt[6]{x}}+10 x^{2} \sqrt[3]{x}
$$

8.16 We introduce the functions f on $(0, \infty)$, defined by

$$
f(x)=\sqrt[3]{x}
$$

and the function g on $(-1, \infty)$, defined by

$$
g(x)=1+x|x|
$$

Then $h(x)=f(g(x))$ for all $x>-1$. In other words: the function h is the composition of the functions f and g. Note that f is differentiable on the interval $(0, \infty)$ and that $g((-1, \infty))=(0, \infty)$. So if we can prove that the function g is differentiable on the interval $(-1, \infty)$, then the function h is differentiable on the interval $(-1, \infty)$.
In order to prove that the function g is differentiable we note that

$$
g(x)= \begin{cases}1-x^{2} & \text { if }-1<x<0 \\ 1+x^{2} & \text { if } x \geq 0\end{cases}
$$

In view of the Arithmetic Rules for differentiable functions, the function g is differentiable for $x>-1$ and $x \neq 0$. For $x \neq 0$

$$
\frac{g(x)-g(0)}{x}=\frac{g(x)-1}{x}=\frac{1+x|x|-1}{x}=|x|
$$

Hence,

$$
\lim _{x \rightarrow 0} \frac{g(x)-g(0)}{x}=\lim _{x \rightarrow 0}|x|=0
$$

This means that the function g is also differentiable at 0 and that $g^{\prime}(0)=0$.
So the function g is differentiable and

$$
g^{\prime}(x)=\left\{\begin{array}{ll}
-2 x & \text { if }-1<x<0 \\
0 & \text { if } x=0 \\
2 x & \text { if } x>0
\end{array}=2|x|\right.
$$

According to the Chain Rule,

$$
h^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)=\frac{2}{3}(1+x|x|)^{-\frac{2}{3}}|x| .
$$

8.18 The function cos restricted to the interval $[0, \pi]$ is strictly decreasing and therefore invertible.

According to the Inverse Function Theorem, the function arccos is differentiable on $(-1,1)$ and for $y \in(-1,1)$,

$$
\arccos ^{\prime}(y)=\frac{1}{\cos ^{\prime}(\arccos (y))}=\frac{1}{-\sin (\arccos (y))}=-\frac{1}{\sqrt{1-\cos ^{2}(\arccos (y))}}=-\frac{1}{\sqrt{1-y^{2}}}
$$

8.19 Since, for $x>0$,

$$
h(x)=4 x^{\frac{3}{2}}=4 x \sqrt{x}
$$

the function h is the product of the functions f and g on $(0, \infty)$ defined by $f(x)=4 x$ and $g(x)=\sqrt{x}$, respectively. Since the functions f and g are differentiable, the Product Rule implies that the function h is differentiable. Furthermore, for $x>0$,

$$
h^{\prime}(x)=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)=4 \sqrt{x}+4 x \cdot \frac{1}{2 \sqrt{x}}=6 \sqrt{x}
$$

This implies that for all $x>0$,

$$
E_{h}(x)=h^{\prime}(x) \cdot \frac{x}{h(x)}=6 \sqrt{x} \cdot \frac{x}{4 x \sqrt{x}}=\frac{3}{2} .
$$

8.21 (a) Since, for $p>0, r(p)=p \cdot d(p)$,

$$
r^{\prime}(p)=d(p)+p d^{\prime}(p)=d(p)+d^{\prime}(p) \frac{p}{d(p)} \cdot d(p)=d(p)\left[1+E_{d}(p)\right]
$$

(b) By using part (a), it follows that

$$
E_{r}(p)=r^{\prime}(p) \cdot \frac{p}{r(p)}=d(p)\left[1+E_{d}(p)\right] \cdot \frac{p}{p \cdot d(p)}=1+E_{d}(p)
$$

8.22 (a) For $-1<u<1$,

$$
\begin{aligned}
h^{\prime}(u) & =(10 A)^{2 u} \ln (10 A) \cdot 2 \cdot \sqrt[3]{1-u^{2}}+(10 A)^{2 u} \frac{1}{3 \sqrt[3]{\left(1-u^{2}\right)^{2}}} \cdot(-2 u) \\
& =(10 A)^{2 u} \frac{6 \ln (10 A)\left(1-u^{2}\right)-2 u}{3 \sqrt[3]{\left(1-u^{2}\right)^{2}}}
\end{aligned}
$$

(b) For all $k \neq 2$,

$$
\begin{aligned}
G^{\prime}(k) & =\frac{(2 k-4) \frac{1}{2 \sqrt{(b k)^{2}+3 c^{2}}} \cdot 2 b^{2} k-\sqrt{(b k)^{2}+3 c^{2}} \cdot 2}{(2 k-4)^{2}} \\
& =\frac{(2 k-4) b^{2} k-2\left[(b k)^{2}+3 c^{2}\right]}{(2 k-4)^{2} \sqrt{(b k)^{2}+3 c^{2}}} \\
& =\frac{2 b^{2} k^{2}-4 b^{2} k-2(b k)^{2}-6 c^{2}}{(2 k-4)^{2} \sqrt{(b k)^{2}+3 c^{2}}}=\frac{-4 b^{2} k-6 c^{2}}{(2 k-4)^{2} \sqrt{(b k)^{2}+3 c^{2}}} .
\end{aligned}
$$

(c) For all u,

$$
f^{\prime}(u)=\frac{1}{1+\frac{1}{\left(1+u^{2}\right)^{2}}} \cdot \frac{-2 u}{\left(1+u^{2}\right)^{2}}=\frac{-2 u}{\left(1+u^{2}\right)^{2}+1}
$$

(d)

$$
C^{\prime}(h)=\frac{1}{1+\tan ^{2} h} \cdot 2 \tan h \cdot \frac{1}{\cos ^{2} h}=\frac{2 \tan h}{\cos ^{2} h+\sin ^{2} h}=2 \tan h
$$

8.23 As $f(1)=5=f(-1)$, the function f is not invertible!
10.1 (a) Take $a=0, b=1, f(t)=\frac{1}{\sqrt{t}}$ and $\varphi(x)=3 x^{2}+1$.
(b) An antiderivative of f is the function F defined by $F(t)=2 \sqrt{t}$.
(c) As $\varphi^{\prime}(x)=2$, we obtain

$$
\begin{aligned}
\int_{0}^{1} \frac{x}{\sqrt{3 x^{2}+1}} \mathrm{~d} x & =\frac{1}{6} \int_{0}^{1} \frac{1}{\sqrt{3 x^{2}+1}} \cdot 6 x \mathrm{~d} x=\frac{1}{6} \int_{0}^{1} \frac{1}{\sqrt{\varphi(x)}} \cdot \varphi^{\prime}(x) \mathrm{d} x \\
& =\frac{1}{3}[\sqrt{\varphi(x)}]_{0}^{1}=\frac{1}{3}\left[\sqrt{3 x^{2}+1}\right]_{0}^{1}=\frac{1}{3}
\end{aligned}
$$

11.2 (a) Take $a=0, b=2, f(t)=\frac{1}{t}$ and $\varphi(x)=2 x+1$.
(b) An antiderivative of f is the function F defined by $F(t)=\ln t$.
(c) As $\varphi^{\prime}(x)=2$, we obtain

$$
\begin{aligned}
\int_{0}^{2} \frac{1}{2 x+1} \mathrm{~d} x & =\frac{1}{2} \int_{0}^{2} \frac{1}{2 x+1} \cdot 2 \mathrm{~d} x=\frac{1}{2} \int_{0}^{2} \frac{1}{\varphi(x)} \cdot \varphi^{\prime}(x) \mathrm{d} x \\
& =\frac{1}{2}[\ln \varphi(x)]_{0}^{2}=\frac{1}{2}[\ln (2 x+1)]_{0}^{2}=\frac{1}{2} \ln 5
\end{aligned}
$$

11.4 (a) In order to evaluate the integral

$$
\int_{-1}^{1} \frac{x^{2}}{\sqrt{x^{3}+9}} \mathrm{~d} x
$$

we introduce $\varphi(x)=x^{3}+9$. As $\varphi(-1)=8$ and $\varphi(1)=10$, the Method of Substitution leads to

$$
\begin{aligned}
\int_{-1}^{1} \frac{x^{2}}{\sqrt{x^{3}+9}} \mathrm{~d} x & =\int_{-1}^{1} \frac{1}{3 \sqrt{x^{3}+9}} \cdot 3 x^{2} \mathrm{~d} x=\int_{-1}^{1} \frac{1}{3 \sqrt{\varphi(x)}} \cdot \varphi^{\prime}(x) \mathrm{d} x \\
& =\int_{8}^{10} \frac{1}{3} t^{-\frac{1}{2}} \mathrm{~d} t=\left[\frac{2}{3} t^{\frac{1}{2}}\right]_{8}^{10}=\frac{2}{3} \sqrt{10}-\frac{2}{3} \sqrt{8}
\end{aligned}
$$

(b) In order to evaluate the integral

$$
\int_{0}^{\ln 2} \mathrm{e}^{x}\left(1+\mathrm{e}^{x}\right) \mathrm{d} x
$$

we introduce $\varphi(x)=1+\mathrm{e}^{x}$. As $\varphi(0)=2$ and $\varphi(\ln 2)=3$, the Method of Substitution leads to

$$
\begin{aligned}
\int_{0}^{\ln 2} \mathrm{e}^{x}\left(1+\mathrm{e}^{x}\right) \mathrm{d} x & =\int_{0}^{\ln 2}\left(1+\mathrm{e}^{x}\right) \cdot \mathrm{e}^{x} \mathrm{~d} x=\int_{0}^{\ln 2} \varphi(x) \cdot \varphi^{\prime}(x) \mathrm{d} x \\
& =\int_{2}^{3} t \mathrm{~d} t=\left[\frac{1}{2} t^{2}\right]_{2}^{3}=4 \frac{1}{2}-2=2 \frac{1}{2}
\end{aligned}
$$

