8.14 We introduce the functions f and g on (0, c0), defined by

and g(z) ==
Then, for z > 0,
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In other words: the function h is the composition of the differentiable functions f and g. So according

to the Chain Rule, the function h is differentiable and for x > 0
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According to the Product Rule for limits of functions, this implies that
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Here the first equality is a consequence of the continuity of the function f at 0.

(b) The function is differentiable at 0, because
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Apparently, f'(0) = ¢.



8.26 Note that for all x # 1,
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Let (a:n)f;l be a sequence converging to 1 such that x,, > 1 for all n. Then
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n—y Was chosen arbitrarily, this proves that

In a similar way one proves that the left-hand derivative of f at 1 is 3. Hence, the function f is
differentiable at 1 and f/(1) = 3.
Alternative

It is also possible to apply the Arithmetic Rules for limits of functions to show that the two limits

discussed before are equal to 3.

Take a = 0,b =4, f(t) = v/t and p(x) = 2% + 9.
An antiderivative of f is the function F' defined by F(t) = 2t\/t.

As ¢'(x) = 2z, we obtain
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In order to evaluate the integral
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we introduce ¢(z) = cosz. As p(0) =1 and p(£m) = $V/3, the Method of Substitution leads to
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We use the Method of Substitution with ¢(z) = 2v/3(z + ). Then we obtain
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