8.14 We introduce the functions f and g on $(0, \infty)$, defined by

$$
\begin{aligned}
& f(x)=x^{m} \\
& g(x)=x^{\frac{1}{n}} .
\end{aligned}
$$

Then, for $x>0$,

$$
h(x)=x^{\frac{m}{n}}=\left[x^{\frac{1}{n}}\right]^{m}=f(g(x)) .
$$

In other words: the function h is the composition of the differentiable functions f and g. So according to the Chain Rule, the function h is differentiable and for $x>0$

$$
\begin{aligned}
h^{\prime}(x) & =f^{\prime}(g(x)) \cdot g^{\prime}(x)=m g(x)^{m-1} \cdot \frac{1}{n} x^{\frac{1}{n}-1} \\
& =m\left[x^{\frac{1}{n}}\right]^{m-1} \cdot \frac{1}{n} x^{\frac{1}{n}-1}=\frac{m}{n} x^{\frac{m-1}{n}} \cdot x^{\frac{1}{n}-1}=\frac{m}{n} x^{\frac{m}{n}-1} .
\end{aligned}
$$

8.17 (a) For $-\frac{1}{2} \pi<t<\frac{1}{2} \pi$,

$$
\frac{1}{\cos ^{2} t}=\frac{\sin ^{2} t+\cos ^{2} t}{\cos ^{2} t}=1+\frac{\sin ^{2} t}{\cos ^{2} t}=1+\tan ^{2} t
$$

(b) For $y \in \mathbb{R}$

$$
\arctan ^{\prime}(y)=\frac{1}{\tan ^{\prime}(\arctan (y))}=\frac{1}{\frac{1}{\cos ^{2}(\arctan (y))}}=\frac{1}{1+\tan ^{2}[\arctan (y)]}=\frac{1}{1+y^{2}} .
$$

8.20 According to the Product Rule, for a $c \in I$,

$$
\begin{aligned}
E_{f \cdot g}(c) & =(f \cdot g)^{\prime}(c) \cdot \frac{c}{(f \cdot g)(c)}=\left[f^{\prime}(c) g(c)+f(c) g^{\prime}(c)\right] \cdot \frac{c}{f(c) g(c)} \\
& =f^{\prime}(c) g(c) \cdot \frac{c}{f(c) g(c)}+f(c) g^{\prime}(c) \cdot \frac{c}{f(c) g(c)} \\
& =f^{\prime}(c) \cdot \frac{c}{f(c)}+g^{\prime}(c) \cdot \frac{c}{g(c)}=E_{f}(c)+E_{g}(c) .
\end{aligned}
$$

8.24 (a) Say $\lim _{x \rightarrow 0} \frac{f(x)}{x}=\ell$. For every $x \neq 0$

$$
f(x)=x \cdot \frac{f(x)}{x} .
$$

According to the Product Rule for limits of functions, this implies that

$$
f(0)=\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x \cdot \frac{f(x)}{x}=0 \cdot \ell=0 .
$$

Here the first equality is a consequence of the continuity of the function f at 0 .
(b) The function is differentiable at 0 , because

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f(x)}{x}=\ell .
$$

Apparently, $f^{\prime}(0)=\ell$.
8.26 Note that for all $x \neq 1$,

$$
\frac{f(x)-f(1)}{x-1}=\frac{3 x+2|x-1|^{\frac{3}{2}}-3}{x-1}=\frac{3(x-1)+2|x-1|^{\frac{3}{2}}}{x-1}= \begin{cases}3+2 \sqrt{x-1} & \text { if } x>1 \\ 3-2 \sqrt{1-x} & \text { if } x<1\end{cases}
$$

Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence converging to 1 such that $x_{n}>1$ for all n. Then

$$
\lim _{n \rightarrow \infty} \frac{f\left(x_{n}\right)-f(1)}{x_{n}-1}=\lim _{n \rightarrow \infty}\left[3+2 \sqrt{x_{n}-1}\right]=3
$$

As the sequence $\left(x_{n}\right)_{n=1}^{\infty}$ was chosen arbitrarily, this proves that

$$
\lim _{x \downarrow 1} \frac{f(x)-f(1)}{x-1}=3
$$

In a similar way one proves that the left-hand derivative of f at 1 is 3 . Hence, the function f is differentiable at 1 and $f^{\prime}(1)=3$.

Alternative

It is also possible to apply the Arithmetic Rules for limits of functions to show that the two limits discussed before are equal to 3 .
11.3 (a) Take $a=0, b=4, f(t)=\sqrt{t}$ and $\varphi(x)=x^{2}+9$.
(b) An antiderivative of f is the function F defined by $F(t)=\frac{2}{3} t \sqrt{t}$.
(c) As $\varphi^{\prime}(x)=2 x$, we obtain

$$
\begin{aligned}
\int_{0}^{4} x \sqrt{x^{2}+9} \mathrm{~d} x & =\frac{1}{2} \int_{0}^{4} \sqrt{x^{2}+9} \cdot 2 x \mathrm{~d} x=\frac{1}{2} \int_{0}^{4} \sqrt{\varphi(x)} \cdot \varphi^{\prime}(x) \mathrm{d} x \\
& =\frac{1}{2}\left[\frac{2}{3} \varphi(x) \sqrt{\varphi(x)}\right]_{0}^{4}=\left[\frac{1}{3}\left(x^{2}+9\right) \sqrt{x^{2}+9}\right]_{0}^{4}=\frac{1}{3}(125-27)=\frac{98}{3}
\end{aligned}
$$

11.4 (d) In order to evaluate the integral

$$
\int_{0}^{\frac{1}{6} \pi} \tan x \mathrm{~d} x=\int_{0}^{\frac{1}{6} \pi} \frac{\sin x}{\cos x} \mathrm{~d} x
$$

we introduce $\varphi(x)=\cos x$. As $\varphi(0)=1$ and $\varphi\left(\frac{1}{6} \pi\right)=\frac{1}{2} \sqrt{3}$, the Method of Substitution leads to

$$
\begin{aligned}
\int_{0}^{\frac{1}{6} \pi} \frac{\sin x}{\cos x} \mathrm{~d} x & =-\int_{0}^{\frac{1}{6} \pi} \frac{1}{\cos x} \cdot-\sin x \mathrm{~d} x=-\int_{0}^{\frac{1}{6} \pi} \frac{1}{\varphi(x)} \cdot \varphi^{\prime}(x) \mathrm{d} x \\
& =-\int_{1}^{\frac{1}{2} \sqrt{3}} \frac{1}{t} \mathrm{~d} t=-[\ln t]_{1}^{\frac{1}{2} \sqrt{3}}=-\ln \frac{1}{2} \sqrt{3} .
\end{aligned}
$$

11.5 Note that

$$
\frac{1}{x^{2}+x+1}=\frac{1}{x^{2}+x+\frac{1}{4}+\frac{3}{4}}=\frac{1}{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}}=\frac{\frac{4}{3}}{\frac{4}{3}\left(x+\frac{1}{2}\right)^{2}+1}=\frac{4}{3} \frac{1}{\left[\frac{2}{3} \sqrt{3}\left(x+\frac{1}{2}\right)\right]^{2}+1} .
$$

We use the Method of Substitution with $\varphi(x)=\frac{2}{3} \sqrt{3}\left(x+\frac{1}{2}\right)$. Then we obtain

$$
\begin{aligned}
\int_{1}^{4} \frac{1}{x^{2}+x+1} \mathrm{~d} x & =\int_{1}^{4} \frac{\frac{4}{3}}{\frac{2}{3} \sqrt{3}} \frac{1}{\varphi(x)^{2}+1} \varphi^{\prime}(x) \mathrm{d} x=\frac{2}{3} \sqrt{3}[\arctan \varphi(x)]_{1}^{4} \\
& =\frac{2}{3} \sqrt{3}(\arctan 3 \sqrt{3}-\arctan \sqrt{3})
\end{aligned}
$$

