
8.14 We introduce the functions f and g on (0,∞), defined by

f(x) = xm

g(x) = x

1

n
.and

Then, for x > 0,

h(x) = x

m
n =

[

x

1

n
]m

= f
(

g(x)
)

.

In other words: the function h is the composition of the differentiable functions f and g. So according

to the Chain Rule, the function h is differentiable and for x > 0

h′(x) = f ′(g(x)
)

· g′(x) = mg(x)m−1 · 1
n
x

1

n
−1

= m
[

x

1

n
]m−1

· 1
n
x

1

n
−1

=
m

n
x

m−1

n · x
1

n
−1

=
m

n
x

m
n

−1

.

8.17 (a) For − 1

2
π < t < 1

2
π,

1

cos2 t
=

sin2 t+ cos2 t

cos2 t
= 1 +

sin2 t

cos2 t
= 1 + tan2 t.

(b) For y ∈ IR

arctan′(y) =
1

tan′(arctan(y))
=

1
1

cos2(arctan(y))

=
1

1 + tan2[arctan(y)]
=

1

1 + y2
.

8.20 According to the Product Rule, for a c ∈ I,

Ef ·g(c) =
(

f · g
)′
(c) · c

(

f · g
)

(c)
= [f ′(c)g(c) + f(c)g′(c)] · c

f(c)g(c)

= f ′(c)g(c) · c

f(c)g(c)
+ f(c)g′(c) · c

f(c)g(c)

= f ′(c) · c

f(c)
+ g′(c) · c

g(c)
= Ef (c) + Eg(c).

8.24 (a) Say lim
x→0

f(x)

x
= ℓ. For every x 6= 0

f(x) = x · f(x)
x

.

According to the Product Rule for limits of functions, this implies that

f(0) = lim
x→0

f(x) = lim
x→0

x · f(x)
x

= 0 · ℓ = 0.

Here the first equality is a consequence of the continuity of the function f at 0.

(b) The function is differentiable at 0, because

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

f(x)

x
= ℓ.

Apparently, f ′(0) = ℓ.



8.26 Note that for all x 6= 1,

f(x)− f(1)

x− 1
=

3x+ 2|x− 1|
3

2 − 3

x− 1
=

3(x− 1) + 2|x− 1|
3

2

x− 1
=

{

3 + 2
√
x− 1 if x > 1

3− 2
√
1− x if x < 1.

Let
(

xn

)∞
n=1

be a sequence converging to 1 such that xn > 1 for all n. Then

lim
n→∞

f(xn)− f(1)

xn − 1
= lim

n→∞

[

3 + 2
√
xn − 1

]

= 3.

As the sequence
(

xn

)∞
n=1

was chosen arbitrarily, this proves that

lim
x↓1

f(x)− f(1)

x− 1
= 3.

In a similar way one proves that the left-hand derivative of f at 1 is 3. Hence, the function f is

differentiable at 1 and f ′(1) = 3.

Alternative

It is also possible to apply the Arithmetic Rules for limits of functions to show that the two limits

discussed before are equal to 3.

11.3 (a) Take a = 0, b = 4, f(t) =
√
t and ϕ(x) = x2 + 9.

(b) An antiderivative of f is the function F defined by F (t) = 2

3
t
√
t.

(c) As ϕ′(x) = 2x, we obtain

∫ 4

0

x
√

x2 + 9dx = 1

2

∫ 4

0

√

x2 + 9 · 2xdx = 1

2

∫ 4

0

√

ϕ(x) · ϕ′(x) dx

= 1

2

[

2

3
ϕ(x)

√

ϕ(x)
]4

0

=
[

1

3
(x2 + 9)

√
x2 + 9

]4

0

= 1

3
(125− 27) = 98

3
.

11.4 (d) In order to evaluate the integral
∫ 1

6
π

0

tanxdx =

∫ 1

6
π

0

sinx

cosx
dx

we introduce ϕ(x) = cosx. As ϕ(0) = 1 and ϕ(1
6
π) = 1

2

√
3, the Method of Substitution leads to

∫ 1

6
π

0

sinx

cosx
dx = −

∫ 1

6
π

0

1

cosx
· − sinxdx = −

∫ 1

6
π

0

1

ϕ(x)
· ϕ′(x) dx

= −
∫ 1

2

√
3

1

1

t
dt = −

[

ln t
]

1

2

√
3

1

= − ln 1

2

√
3.

11.5 Note that

1

x2 + x+ 1
=

1

x2 + x+ 1

4
+ 3

4

=
1

(x+ 1

2
)2 + 3

4

=
4

3

4

3
(x+ 1

2
)2 + 1

= 4

3

1

[ 2
3

√
3(x+ 1

2
)]2 + 1

.

We use the Method of Substitution with ϕ(x) = 2

3

√
3(x + 1

2
). Then we obtain

∫

4

1

1

x2 + x+ 1
dx =

∫

4

1

4

3

2

3

√
3

1

ϕ(x)2 + 1
ϕ′(x) dx = 2

3

√
3 [arctanϕ(x)]4

1

= 2

3

√
3
(

arctan 3
√
3− arctan

√
3
)

.


