
9.1 Since the function f is differentiable everywhere, Theorem 1 implies that if f has an extreme value at c,

then f ′(c) = 0. Since f ′(c) = 0 ⇐⇒ c = 0, the proof is complete if we can show that the function doesn’t

have an extreme value at 0.

Let ε > 0. Then ± 1

2
ε ∈ (−ε, ε) and

f( 1
2
ε) = 1

8
ε3 > 0 = f(0)

f(− 1

2
ε) = − 1

8
ε3 < 0 = f(0).and

This proves that any interval around 0 contains a point where the function is larger than f(0): so the

function doesn’t take on a maximum at 0. Also any interval around 0 contains a point where the function

is smaller than f(0): so the function doesn’t take on a minimum at 0.

9.2 (a) Using

f ′(x) = 3x2 − 6x− 9 = 3(x2 − 2x− 3) = 3(x− 3)(x+ 1),

we get

f ′(x) = 0 ⇐⇒ 3(x− 3)(x+ 1) = 0 ⇐⇒ x = −1 or x = 3.

So the stationary points of the the function f are −1 and 3.

(b) Using

g′(u) = 3Au2 + 2Bu+ C,

we get

g′(u) = 0 ⇐⇒ 3Au2 + 2Bu+ C = 0 ⇐⇒ u =
−2B ±

√
4B2 − 12AC

6A
,

provided that A 6= 0 and B2 − 3AC ≥ 0.

So the stationary points of the function g are
−B +

√
B2 − 3AC

3A
and

−B −
√
B2 − 3AC

3A
.

(c) Using

F ′(v) =
1

1 + (v − 2)2
· 2(v − 2),

we get

F ′(v) = 0 ⇐⇒ 2(v − 2)

1 + (v − 2)2
= 0 ⇐⇒ v = 2.

So the stationary point of the the function F is 2.

(d) Using

h′(y) = −e−y(y2 − 2y − 7) + e−y(2y − 2) = −e−y(y2 − 4y − 5) = −e−y(y − 5)(y + 1),

we get

h′(y) = 0 ⇐⇒ (y − 5)(y + 1) = 0 ⇐⇒ y = −1 or y = 5.

So the stationary points of the the function h are −1 and 5.



9.3 Assume that there exist points x and x′ in [a, b] such that x 6= x′ and g(x) = g(x′). Say x < x′.

The the function g restricted to the interval [x, x′] is continuous and differentiable on the interval (x, x′).

Furthermore, g(x) = g(x′).

Then, according to Rolle’s Theorem, there exists a τ ∈ (x, x′) such that g′(τ) = 0. This is in contradiction

with the data of the exercise.

9.4 We introduce the function f on IR, defined by f(x) = x5 + 2x3 + x − 5. Obviously, a number z is a

solution of the equation if and only if z is a zero of the function f . We will prove that the function f has

a unique zero.

(a) Note that f(0) = −5 < 0 and f(2) = 45 > 0.

Since the function f is the sum of continuous functions, according to the arithmetic rules for continuous

functions, the function f is continuous on the interval [0, 2].

According to the Intermediate Value Theorem there exists a τ ∈ (0, 2) such that f(τ) = 0. So the function

f has at least one zero.

(b) Note that the function f is differentiable and that for all x ∈ IR

f ′(x) = 5x4 + 6x2 + 1 > 0.

Assume that c and d are zeros of the function f and that c < d.

The function f restricted to the interval [c, d] is continuous and differentiable on the interval (c, d);

furthermore f(c) = f(d) = 0.

According to Rolle’s Theorem there exists a τ ∈ (c, d) such that f ′(τ) = 0. This is in contradiction with

the fact that f ′(x) > 0 for all x ∈ IR.

9.5 The function f restricted to the interval [a, b] is continuous and differentiable on the interval (a, b).

According to the Mean Value Theorem a number τ ∈ (a, b) exists such that

f ′(τ) =
f(b)− f(a)

b− a
⇐⇒ 2τ =

b2 − a2

b− a
⇐⇒ 2τ = b+ a ⇐⇒ τ = 1

2
(a+ b).

9.6 We introduce the function h = f − g. Then the function h is continuous on the interval [a, b] and

differentiable on the interval (a, b). Furthermore, for every x ∈ (a, b),

h′(x) = f ′(x)− g′(x) = 0.

In view of Theorem 4 this means that a constant C exists such that h = C, or: f = g + C.

9.9 (a) According to Theorem 5(a), the function f is increasing. Assume that the function f is not strictly

increasing. Then there exits two points in I , say x and x′, such that x < x′ and f(x) = f(x′).

Since f is increasing on the interval [x, x′], it follows that f is constant on that interval.

Hence, f ′ is zero throughout the open interval (x, x′).



(b) Note that

g′(x) = 1 + cosx.

So g′(x) ≥ 0 for all x and g′(x) > 0 except if cosx is equal to −1. Since cosx = −1 if and only if |x| is
an odd multiple of π, part (a) implies that g is strictly increasing.

9.10 Note that for x 6= 0,

f ′(x) = 1− 1

x2
=

x2 − 1

x2
=

(x − 1)(x+ 1)

x2
.

Hence, f ′(x) = 0 ⇐⇒ x = −1 or x = 1 and the sign survey of f ′ is given by

f ′

−1

0+ + − −
0

× − −
1

0 + +

According to Theorem 5, the function f is strictly increasing on the intervals [1,∞) and (−∞,−1]. The

function is strictly decreasing on the intervals [−1, 0) and (0, 1].

9.13 If the function f has a local minimum at c, then Theorem 1 implies that f ′(c) = 0.

Now assume that f ′′(c) < 0. Then Theorem 7 implies that f has a local maximum at c.

This is impossible unless the function f is constant in the neighborhood of c. Then however f ′′(c) = 0

which is not in accordance with our assumption. So f ′′(c) ≤ 0.

9.14 Note that the function f is twice differentiable on the set IR \ {0} and that for x 6= 0,

f ′(x) = 1− 1

x2

f ′′(x) =
2

x3
.and

So f ′(x) = 0 ⇐⇒ x2 = 1 ⇐⇒ x = ±1.

Since f ′′(−1) = −2 < 0 and −1 is an interior point of the interval (−∞, 0), the function has a maximum

at −1.

Because f ′′(1) = 2 > 0 and 1 is an interior point of the interval (0,∞), the function has a minimum at 1.

11.6 (a) In order to evaluate the integral
∫ 1

0

x2 ex dx

we introduce f(x) = x2 and g′(x) = ex. Because, for any x > 0, f ′(x) = 2x and g(x) = ex, Partial

Integration leads to
∫

1

0

x2 ex dx =
[

x2 · ex
]1

0
−
∫

1

0

2x · ex dx = e− 2.

(d) In order to evaluate the integral
∫ e

1

(

lnx
)2 · 1 dx

we introduce f(x) =
(

ln x
)2

and g′(x) = 1. Because, for any x > 0, f ′(x) =
2 lnx

x
and g(x) = x, Partial

Integration leads to
∫

e

1

(

lnx
)2

dx =
[(

lnx
)2 · x

]e

1
−
∫

e

1

2 lnx

x
· x dx = e− 2

∫

e

1

lnx dx = e− 2.


