9.1 Since the function f is differentiable everywhere, Theorem 1 implies that if f has an extreme value at c, then $f^{\prime}(c)=0$. Since $f^{\prime}(c)=0 \Longleftrightarrow c=0$, the proof is complete if we can show that the function doesn't have an extreme value at 0 .
Let $\varepsilon>0$. Then $\pm \frac{1}{2} \varepsilon \in(-\varepsilon, \varepsilon)$ and
and

$$
f\left(\frac{1}{2} \varepsilon\right)=\frac{1}{8} \varepsilon^{3}>0=f(0)
$$

$$
f\left(-\frac{1}{2} \varepsilon\right)=-\frac{1}{8} \varepsilon^{3}<0=f(0)
$$

This proves that any interval around 0 contains a point where the function is larger than $f(0)$: so the function doesn't take on a maximum at 0 . Also any interval around 0 contains a point where the function is smaller than $f(0)$: so the function doesn't take on a minimum at 0 .
9.2 (a) Using

$$
f^{\prime}(x)=3 x^{2}-6 x-9=3\left(x^{2}-2 x-3\right)=3(x-3)(x+1)
$$

we get

$$
f^{\prime}(x)=0 \Longleftrightarrow 3(x-3)(x+1)=0 \Longleftrightarrow x=-1 \text { or } x=3 .
$$

So the stationary points of the the function f are -1 and 3 .
(b) Using

$$
g^{\prime}(u)=3 A u^{2}+2 B u+C,
$$

we get

$$
g^{\prime}(u)=0 \Longleftrightarrow 3 A u^{2}+2 B u+C=0 \Longleftrightarrow u=\frac{-2 B \pm \sqrt{4 B^{2}-12 A C}}{6 A}
$$

provided that $A \neq 0$ and $B^{2}-3 A C \geq 0$.
So the stationary points of the function g are $\frac{-B+\sqrt{B^{2}-3 A C}}{3 A}$ and $\frac{-B-\sqrt{B^{2}-3 A C}}{3 A}$.
(c) Using

$$
F^{\prime}(v)=\frac{1}{1+(v-2)^{2}} \cdot 2(v-2)
$$

we get

$$
F^{\prime}(v)=0 \Longleftrightarrow \frac{2(v-2)}{1+(v-2)^{2}}=0 \Longleftrightarrow v=2
$$

So the stationary point of the the function F is 2 .
(d) Using

$$
h^{\prime}(y)=-\mathrm{e}^{-y}\left(y^{2}-2 y-7\right)+\mathrm{e}^{-y}(2 y-2)=-\mathrm{e}^{-y}\left(y^{2}-4 y-5\right)=-\mathrm{e}^{-y}(y-5)(y+1),
$$

we get

$$
h^{\prime}(y)=0 \Longleftrightarrow(y-5)(y+1)=0 \Longleftrightarrow y=-1 \text { or } y=5 .
$$

So the stationary points of the the function h are -1 and 5 .
9.3 Assume that there exist points x and x^{\prime} in $[a, b]$ such that $x \neq x^{\prime}$ and $g(x)=g\left(x^{\prime}\right)$. Say $x<x^{\prime}$.

The the function g restricted to the interval $\left[x, x^{\prime}\right]$ is continuous and differentiable on the interval $\left(x, x^{\prime}\right)$. Furthermore, $g(x)=g\left(x^{\prime}\right)$.
Then, according to Rolle's Theorem, there exists a $\tau \in\left(x, x^{\prime}\right)$ such that $g^{\prime}(\tau)=0$. This is in contradiction with the data of the exercise.
9.4 We introduce the function f on \mathbb{R}, defined by $f(x)=x^{5}+2 x^{3}+x-5$. Obviously, a number z is a solution of the equation if and only if z is a zero of the function f. We will prove that the function f has a unique zero.
(a) Note that $f(0)=-5<0$ and $f(2)=45>0$.

Since the function f is the sum of continuous functions, according to the arithmetic rules for continuous functions, the function f is continuous on the interval $[0,2]$.
According to the Intermediate Value Theorem there exists a $\tau \in(0,2)$ such that $f(\tau)=0$. So the function f has at least one zero.
(b) Note that the function f is differentiable and that for all $x \in \mathbb{R}$

$$
f^{\prime}(x)=5 x^{4}+6 x^{2}+1>0
$$

Assume that c and d are zeros of the function f and that $c<d$.
The function f restricted to the interval $[c, d]$ is continuous and differentiable on the interval (c, d); furthermore $f(c)=f(d)=0$.
According to Rolle's Theorem there exists a $\tau \in(c, d)$ such that $f^{\prime}(\tau)=0$. This is in contradiction with the fact that $f^{\prime}(x)>0$ for all $x \in \mathbb{R}$.
9.5 The function f restricted to the interval $[a, b]$ is continuous and differentiable on the interval (a, b). According to the Mean Value Theorem a number $\tau \in(a, b)$ exists such that

$$
f^{\prime}(\tau)=\frac{f(b)-f(a)}{b-a} \Longleftrightarrow 2 \tau=\frac{b^{2}-a^{2}}{b-a} \Longleftrightarrow 2 \tau=b+a \Longleftrightarrow \tau=\frac{1}{2}(a+b)
$$

9.6 We introduce the function $h=f-g$. Then the function h is continuous on the interval $[a, b]$ and differentiable on the interval (a, b). Furthermore, for every $x \in(a, b)$,

$$
h^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)=0
$$

In view of Theorem 4 this means that a constant C exists such that $h=C$, or: $f=g+C$.
9.9 (a) According to Theorem $5(\mathrm{a})$, the function f is increasing. Assume that the function f is not strictly increasing. Then there exits two points in I, say x and x^{\prime}, such that $x<x^{\prime}$ and $f(x)=f\left(x^{\prime}\right)$. Since f is increasing on the interval $\left[x, x^{\prime}\right]$, it follows that f is constant on that interval.
Hence, f^{\prime} is zero throughout the open interval $\left(x, x^{\prime}\right)$.
(b) Note that

$$
g^{\prime}(x)=1+\cos x
$$

So $g^{\prime}(x) \geq 0$ for all x and $g^{\prime}(x)>0$ except if $\cos x$ is equal to -1 . Since $\cos x=-1$ if and only if $|x|$ is an odd multiple of π, part (a) implies that g is strictly increasing.
9.10 Note that for $x \neq 0$,

$$
f^{\prime}(x)=1-\frac{1}{x^{2}}=\frac{x^{2}-1}{x^{2}}=\frac{(x-1)(x+1)}{x^{2}}
$$

Hence, $f^{\prime}(x)=0 \Longleftrightarrow x=-1$ or $x=1$ and the sign survey of f^{\prime} is given by

$$
\begin{array}{cccccc}
++ & 0 & - & \times & - & - \\
1 & 0 & ++ & \\
\hline-1 & 0 & 1 &
\end{array} f^{\prime}
$$

According to Theorem 5, the function f is strictly increasing on the intervals $[1, \infty)$ and $(-\infty,-1]$. The function is strictly decreasing on the intervals $[-1,0)$ and $(0,1]$.
9.13 If the function f has a local minimum at c, then Theorem 1 implies that $f^{\prime}(c)=0$.

Now assume that $f^{\prime \prime}(c)<0$. Then Theorem 7 implies that f has a local maximum at c.
This is impossible unless the function f is constant in the neighborhood of c. Then however $f^{\prime \prime}(c)=0$ which is not in accordance with our assumption. So $f^{\prime \prime}(c) \leq 0$.
9.14 Note that the function f is twice differentiable on the set $\mathbb{R} \backslash\{0\}$ and that for $x \neq 0$,

$$
\begin{aligned}
f^{\prime}(x) & =1-\frac{1}{x^{2}} \\
f^{\prime \prime}(x) & =\frac{2}{x^{3}}
\end{aligned}
$$

and
So $f^{\prime}(x)=0 \Longleftrightarrow x^{2}=1 \Longleftrightarrow x= \pm 1$.
Since $f^{\prime \prime}(-1)=-2<0$ and -1 is an interior point of the interval $(-\infty, 0)$, the function has a maximum at -1 .
Because $f^{\prime \prime}(1)=2>0$ and 1 is an interior point of the interval $(0, \infty)$, the function has a minimum at 1 .
11.6 (a) In order to evaluate the integral

$$
\int_{0}^{1} x^{2} \mathrm{e}^{x} \mathrm{~d} x
$$

we introduce $f(x)=x^{2}$ and $g^{\prime}(x)=\mathrm{e}^{x}$. Because, for any $x>0, f^{\prime}(x)=2 x$ and $g(x)=\mathrm{e}^{x}$, Partial Integration leads to

$$
\int_{0}^{1} x^{2} \mathrm{e}^{x} \mathrm{~d} x=\left[x^{2} \cdot \mathrm{e}^{x}\right]_{0}^{1}-\int_{0}^{1} 2 x \cdot \mathrm{e}^{x} \mathrm{~d} x=\mathrm{e}-2
$$

(d) In order to evaluate the integral

$$
\int_{1}^{\mathrm{e}}(\ln x)^{2} \cdot 1 \mathrm{~d} x
$$

we introduce $f(x)=(\ln x)^{2}$ and $g^{\prime}(x)=1$. Because, for any $x>0, f^{\prime}(x)=\frac{2 \ln x}{x}$ and $g(x)=x$, Partial Integration leads to

$$
\int_{1}^{\mathrm{e}}(\ln x)^{2} \mathrm{~d} x=\left[(\ln x)^{2} \cdot x\right]_{1}^{\mathrm{e}}-\int_{1}^{\mathrm{e}} \frac{2 \ln x}{x} \cdot x \mathrm{~d} x=\mathrm{e}-2 \int_{1}^{\mathrm{e}} \ln x \mathrm{~d} x=\mathrm{e}-2 .
$$

