9.1 Since the function f is differentiable everywhere, Theorem 1 implies that if f has an extreme value at c,
then f’(¢) = 0. Since f'(¢) = 0 <= ¢ =0, the proof is complete if we can show that the function doesn’t
have an extreme value at 0.

Let € > 0. Then +1i¢ € (—¢,¢) and

and f(—3e) = —2e3 < 0= f(0).

This proves that any interval around 0 contains a point where the function is larger than f(0): so the
function doesn’t take on a maximum at 0. Also any interval around 0 contains a point where the function

is smaller than f(0): so the function doesn’t take on a minimum at 0.

9.2 (a) Using

fl(x) =322 — 62 —9=3(2> -2z —3)=3(x—3)(z+1),

we get

f(2)=0<=3(z—-3)(z+1)=0<=a2=—-1lorz=3.

So the stationary points of the the function f are —1 and 3.
(b) Using
g (u) = 3Au* + 2Bu + C,

we get

—2B ++v4B? — 12AC

g (u)=0+=3Au> +2Bu+C =0+=u= oA

provided that A # 0 and B2 — 3AC > 0.
—B++vB?2-3AC an —B—+B?2-3AC

So the stationary points of the function g are 3A d 3A

(c) Using
1
Fl)= —— . 2(p—2
(U) 1 + ('U _ 2)2 (U )7
we get
2(v—2)
F/ = = =
(v) =0 <= T+ (0272 0<=v

So the stationary point of the the function F is 2.

(d) Using
W(y)=—eV(y* =2y —T)+e7¥(2y—2) = —e"(y* —4y —5) = eV (y —5)(y + 1),
we get

P(y)=0<= (y—-5)(y+1)=0«<=y=—lory=>5.

So the stationary points of the the function h are —1 and 5.



9.3

9.4

9.5

9.6

9.9 (a)

Assume that there exist points z and z’ in [a, b] such that « # 2’ and g(z) = g(2’). Say =z < z’.

The the function g restricted to the interval [z, 2] is continuous and differentiable on the interval (z, x’).
Furthermore, g(x) = g(z').

Then, according to Rolle’s Theorem, there exists a 7 € (z,z’) such that ¢’(7) = 0. This is in contradiction

with the data of the exercise.

We introduce the function f on IR, defined by f(x) = a® + 223 + 2 — 5. Obviously, a number z is a
solution of the equation if and only if z is a zero of the function f. We will prove that the function f has
a unique zero.

Note that f(0) = —5 < 0 and f(2) =45 > 0.

Since the function f is the sum of continuous functions, according to the arithmetic rules for continuous
functions, the function f is continuous on the interval [0, 2].

According to the Intermediate Value Theorem there exists a 7 € (0, 2) such that f(7) = 0. So the function
f has at least one zero.

Note that the function f is differentiable and that for all x € IR
f'(z) = 52" + 62> + 1 > 0.

Assume that ¢ and d are zeros of the function f and that ¢ < d.

The function f restricted to the interval [c,d] is continuous and differentiable on the interval (c,d);
furthermore f(c) = f(d) = 0.

According to Rolle’s Theorem there exists a 7 € (¢, d) such that f/(7) = 0. This is in contradiction with
the fact that f’(z) > 0 for all z € IR.

The function f restricted to the interval [a,b] is continuous and differentiable on the interval (a,b).

According to the Mean Value Theorem a number 7 € (a,b) exists such that

-t t-d

Fi(r) = b—a b—a

= 2r=bt+a<7=1(at+b).

We introduce the function h = f — g. Then the function h is continuous on the interval [a,b] and

differentiable on the interval (a,b). Furthermore, for every x € (a,b),

In view of Theorem 4 this means that a constant C' exists such that h = C, or: f=¢g+ C.

According to Theorem 5(a), the function f is increasing. Assume that the function f is not strictly
increasing. Then there exits two points in I, say = and z’, such that = < 2’ and f(x) = f(2').
Since f is increasing on the interval [z, '], it follows that f is constant on that interval.

Hence, f’ is zero throughout the open interval (x,z’).



(b)

9.10

9.13

9.14

11.6 (a)

Note that
g (z) =1+ cosz.

So ¢'(x) > 0 for all x and ¢'(z) > 0 except if cosz is equal to —1. Since cosz = —1 if and only if |z| is

an odd multiple of 7, part (a) implies that g is strictly increasing.

Note that for xz # 0,
1 22-1 (z—-1D(z+1)
f’(x):l—?: 2 2 .
Hence, f'(x) =0<= x = —1 or = 1 and the sign survey of f’ is given by
+4+0 - —x——0++
—1 0 1

According to Theorem 5, the function f is strictly increasing on the intervals [1,00) and (—oo, —1]. The

function is strictly decreasing on the intervals [—1,0) and (0, 1].

If the function f has a local minimum at ¢, then Theorem 1 implies that f/(c) = 0.
Now assume that f”(c) < 0. Then Theorem 7 implies that f has a local maximum at c.
This is impossible unless the function f is constant in the neighborhood of ¢. Then however f”(c) =0

which is not in accordance with our assumption. So f”(¢) < 0.

Note that the function f is twice differentiable on the set IR \ {0} and that for « # 0,

fay=1-—

)
2
" _
and f(x) = et
So f'l(x) =0<= 122 =1<=x==1.
Since f”(—1) = =2 < 0 and —1 is an interior point of the interval (—oo, 0), the function has a maximum
at —1.

Because f”(1) =2 > 0 and 1 is an interior point of the interval (0, 00), the function has a minimum at 1.

1
/ 22 e dx
0

we introduce f(z) = 22 and ¢'(r) = e®. Because, for any z > 0, f/(z) = 2z and g(x) = e%, Partial

In order to evaluate the integral

Integration leads to
1 1
/ erzdx:[m2~ez]éf/ 20-edr=e—2.
0 0

In order to evaluate the integral

/ (lnx)2 -1dx
1
B 2Inz

we introduce f(z) = (In :c)2 and ¢'(x) = 1. Because, for any z > 0, f'(z) = and g(x) = z, Partial
x

Integration leads to

/(lnx)2dm:[(lnm)2~m]jf/ 21n:c~:cd:c:ef2/ Inzdr =e— 2.
1 1 1
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