9.7 (a) Let ¢ > 0. According to the Arithmetic Rules for continuous or differentiable functions, the function

9.8

9.11

h = g — f restricted to the interval [0, ¢] is continuous and differentiable on the interval (0,¢). By the

Mean Value Theorem there exists a number 7 € (0, ¢) such that

= g(c) — f(c) = clg'(7) = f'(7)] > 0.

So g(c) > f(c¢). As ¢ was arbitrarily chosen, this implies that g > f.

Let f and g be the functions defined by f(z) = sinz and g(x) = . Then f(0) = 0

fl(x) =cosz <1=g'(z) for all z > 0.

So, according to part (a), for all x > 0,

f(z) < g(z) = sinz < z.

Let f and g be the functions defined by f(z) = —cosz and g(z) = —1 + 22, Then f(0) = —1 = g(0)

and f'(z) =sinz <z = ¢'(x) for all x > 0.

So, according to part (a), for all x > 0,
f(@) < glw) = —cosz < -1+ 222 = cosz > 1 — 32

Hence, for all z > 0,

cosx — 1
1-2a?2<cosz<1= —Jz<— <0.
T
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5% = 0, the Sandwich Lemma for functions implies that
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lim—— =0.
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Let z < c. Because the restriction of the function f to the interval [z, c] is continuous and differentiable

on the interval (z,c), the Mean Value Theorem implies the existence of a 7 € (z, ¢) such that

fle) = (=)

C—XT

= f(r) > 0= f(c) = f(x) > 0= f(2) < f(c) =0.

The case x > ¢ can be handled in a similar way.

Because f'(z) < 0 for all z € (a,c), f is strictly decreasing on the interval (a,c]. So, for every x € (a,c),

f(x) > f(o).
Similarly, f(z) > f(c) for all z € (c,b).

Hence, f(c) is the smallest value of the function on the interval (a,b).

9.12 According to the Quotient Rule for differentiable functions, the function g is differentiable on the interval

(0,1) and for z € (0,1),
g/(x) o CL‘f (‘T) —f(CL') - l(f/(x) _ M)



11.6 (b)

Let ¢ € (0,1). Because the function f restricted to the interval [0, ¢] is continuous and differentiable on

the interval (0, ¢), according to the Mean Value Theorem, there exist a 7 € (0, ¢) such that

This however means that

7@ =2(ro-2 =L - rm) =0

c c c

Note that f'(c) > f'(7), because the function f’ is increasing and because 7 < c.

Since ¢ was arbitrarily chosen, ¢’ > 0. So the function g is increasing on the interval (0, 1).

us
/ 22 sinx dz
0

we introduce f(z) = 22 and ¢'(z) = sinz. Because, for any = > 0, f’(z) = 2z and g(x) = — cos z, Partial

In order to evaluate the integral

Integration leads to

™

T
/ sinzdr = [x2 . —cosx}o
0

—/ 2:6-—cos:vdx:7r2+2/ x coszdr
0 0

s
/ zcoszdr
0

we introduce f(z) = z and ¢'(z) = cosz. Because, for any = > 0, f'(z) = 1 and g(z) = sinz, Partial

In order to evaluate the integral

Integration leads to

/:ccos:cda::[:zrsin:c}g—/ 1~sina:d:c:[cosx}g:—l—lz—l
0 0

So the given integral is equal to 72 — 4.

In order to evaluate the integral

T
/ sin® x dz
0

we introduce f(x) = sinz and ¢’(x) = sinz. Because, for any = > 0, f'(z) = cosz and g(x) = — cosz,

Partial Integration leads to
v - s v s
/ sin? zdx = [sina:-—cos:c}o—/ cosa:-—cos:cd:z::/ coszscd:r:/ [1—sin2:c} dx
0 0 0 0

s s T
:/ d:c—/ sin2:cda::7r—/ sin® z dz.
0 0 0

s
/ sin® x dz = %w.
0

Hence,



11.12 In order to evaluate the integral
/1 xz
———dx
0o V 4 -3z

1
we use the method of Partial Integration with f(z) = 2? and ¢/(r) = ———==. Then

4 — 3x

1 2 1 1
T 1
—  de=[-2/4=-3z 2% — —éxs/4—3xdx:—2+é/ zv4 — 3z de.
‘/0 /4—3$ [ 3 }O 0 3 3 3 0

This last integral can be evaluated by using the method of Partial Integration with f(x) = z and
g’ () = v/4 — 3z. Then we obtain

1
/ V4 —3xde = {—%(4 —3z)lz . x}
0
The original integral is equal to

11.13 In order to evaluate the integral

/ Vzlnzde
1

we use the method of Partial Integration with f(z) = Inz and ¢’(xz) = \/z. Then

e e e 1 e
— 2,14 2,13 ) 2.3
/1 Vzlnxdr = [lnx~§x 2} —/1 sw's ~Ed:17— Zeye — zrz dx
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