9.7 (a) Let $c>0$. According to the Arithmetic Rules for continuous or differentiable functions, the function $h=g-f$ restricted to the interval $[0, c]$ is continuous and differentiable on the interval $(0, c)$. By the Mean Value Theorem there exists a number $\tau \in(0, c)$ such that

$$
\begin{aligned}
\frac{h(c)-h(0)}{c}=h^{\prime}(\tau) & \Longrightarrow \frac{g(c)-f(c)-[g(0)-f(0)]}{c}=g^{\prime}(\tau)-f^{\prime}(\tau) \\
& \Longrightarrow g(c)-f(c)=c\left[g^{\prime}(\tau)-f^{\prime}(\tau)\right] \geq 0
\end{aligned}
$$

So $g(c) \geq f(c)$. As c was arbitrarily chosen, this implies that $g \geq f$.
(b) Let f and g be the functions defined by $f(x)=\sin x$ and $g(x)=x$. Then $f(0)=0=g(0)$ and $f^{\prime}(x)=\cos x \leq 1=g^{\prime}(x)$ for all $x>0$.
So, according to part (a), for all $x \geq 0$,

$$
f(x) \leq g(x) \Longrightarrow \sin x \leq x
$$

(c) Let f and g be the functions defined by $f(x)=-\cos x$ and $g(x)=-1+\frac{1}{2} x^{2}$. Then $f(0)=-1=g(0)$ and $f^{\prime}(x)=\sin x \leq x=g^{\prime}(x)$ for all $x>0$.
So, according to part (a), for all $x \geq 0$,

$$
f(x) \leq g(x) \Longrightarrow-\cos x \leq-1+\frac{1}{2} x^{2} \Longrightarrow \cos x \geq 1-\frac{1}{2} x^{2}
$$

Hence, for all $x>0$,

$$
1-\frac{1}{2} x^{2} \leq \cos x \leq 1 \Longrightarrow-\frac{1}{2} x \leq \frac{\cos x-1}{x} \leq 0
$$

Since $\lim _{x \downarrow 0}-\frac{1}{2} x=0$, the Sandwich Lemma for functions implies that

$$
\lim _{x \downarrow 0} \frac{\cos x-1}{x}=0 .
$$

9.8 Let $x<c$. Because the restriction of the function f to the interval $[x, c]$ is continuous and differentiable on the interval (x, c), the Mean Value Theorem implies the existence of a $\tau \in(x, c)$ such that

$$
\frac{f(c)-f(x)}{c-x}=f^{\prime}(\tau)>0 \Longrightarrow f(c)-f(x)>0 \Longrightarrow f(x)<f(c)=0
$$

The case $x>c$ can be handled in a similar way.
9.11 Because $f^{\prime}(x)<0$ for all $x \in(a, c), f$ is strictly decreasing on the interval ($\left.a, c\right]$. So, for every $x \in(a, c)$, $f(x)>f(c)$.
Similarly, $f(x)>f(c)$ for all $x \in(c, b)$.
Hence, $f(c)$ is the smallest value of the function on the interval (a, b).
9.12 According to the Quotient Rule for differentiable functions, the function g is differentiable on the interval $(0,1)$ and for $x \in(0,1)$,

$$
g^{\prime}(x)=\frac{x f^{\prime}(x)-f(x)}{x^{2}}=\frac{1}{x}\left(f^{\prime}(x)-\frac{f(x)}{x}\right) .
$$

Let $c \in(0,1)$. Because the function f restricted to the interval $[0, c]$ is continuous and differentiable on the interval $(0, c)$, according to the Mean Value Theorem, there exist a $\tau \in(0, c)$ such that

$$
f^{\prime}(\tau)=\frac{f(c)-f(0)}{c-0}=\frac{f(c)}{c}
$$

This however means that

$$
g^{\prime}(c)=\frac{1}{c}\left(f^{\prime}(c)-\frac{f(c)}{c}\right)=\frac{1}{c}\left(f^{\prime}(c)-f^{\prime}(\tau)\right) \geq 0
$$

Note that $f^{\prime}(c) \geq f^{\prime}(\tau)$, because the function f^{\prime} is increasing and because $\tau<c$.
Since c was arbitrarily chosen, $g^{\prime} \geq 0$. So the function g is increasing on the interval $(0,1)$.
11.6 (b) In order to evaluate the integral

$$
\int_{0}^{\pi} x^{2} \sin x \mathrm{~d} x
$$

we introduce $f(x)=x^{2}$ and $g^{\prime}(x)=\sin x$. Because, for any $x>0, f^{\prime}(x)=2 x$ and $g(x)=-\cos x$, Partial Integration leads to

$$
\int_{0}^{\pi} x^{2} \sin x \mathrm{~d} x=\left[x^{2} \cdot-\cos x\right]_{0}^{\pi}-\int_{0}^{\pi} 2 x \cdot-\cos x \mathrm{~d} x=\pi^{2}+2 \int_{0}^{\pi} x \cos x \mathrm{~d} x
$$

In order to evaluate the integral

$$
\int_{0}^{\pi} x \cos x \mathrm{~d} x
$$

we introduce $f(x)=x$ and $g^{\prime}(x)=\cos x$. Because, for any $x>0, f^{\prime}(x)=1$ and $g(x)=\sin x$, Partial Integration leads to

$$
\int_{0}^{\pi} x \cos x \mathrm{~d} x=[x \cdot \sin x]_{0}^{\pi}-\int_{0}^{\pi} 1 \cdot \sin x \mathrm{~d} x=[\cos x]_{0}^{\pi}=-1-1=-2 .
$$

So the given integral is equal to $\pi^{2}-4$.
(c) In order to evaluate the integral

$$
\int_{0}^{\pi} \sin ^{2} x \mathrm{~d} x
$$

we introduce $f(x)=\sin x$ and $g^{\prime}(x)=\sin x$. Because, for any $x>0, f^{\prime}(x)=\cos x$ and $g(x)=-\cos x$, Partial Integration leads to

$$
\begin{aligned}
\int_{0}^{\pi} \sin ^{2} x \mathrm{~d} x & =[\sin x \cdot-\cos x]_{0}^{\pi}-\int_{0}^{\pi} \cos x \cdot-\cos x \mathrm{~d} x=\int_{0}^{\pi} \cos ^{2} x \mathrm{~d} x=\int_{0}^{\pi}\left[1-\sin ^{2} x\right] \mathrm{d} x \\
& =\int_{0}^{\pi} \mathrm{d} x-\int_{0}^{\pi} \sin ^{2} x \mathrm{~d} x=\pi-\int_{0}^{\pi} \sin ^{2} x \mathrm{~d} x
\end{aligned}
$$

Hence,

$$
\int_{0}^{\pi} \sin ^{2} x \mathrm{~d} x=\frac{1}{2} \pi
$$

11.12 In order to evaluate the integral

$$
\int_{0}^{1} \frac{x^{2}}{\sqrt{4-3 x}} \mathrm{~d} x
$$

we use the method of Partial Integration with $f(x)=x^{2}$ and $g^{\prime}(x)=\frac{1}{\sqrt{4-3 x}}$. Then

$$
\int_{0}^{1} \frac{x^{2}}{\sqrt{4-3 x}} \mathrm{~d} x=\left[-\frac{2}{3} \sqrt{4-3 x} \cdot x^{2}\right]_{0}^{1}-\int_{0}^{1}-\frac{4}{3} x \sqrt{4-3 x} \mathrm{~d} x=-\frac{2}{3}+\frac{4}{3} \int_{0}^{1} x \sqrt{4-3 x} \mathrm{~d} x
$$

This last integral can be evaluated by using the method of Partial Integration with $f(x)=x$ and $g^{\prime}(x)=\sqrt{4-3 x}$. Then we obtain

$$
\begin{aligned}
\int_{0}^{1} x \sqrt{4-3 x} \mathrm{~d} x & =\left[-\frac{2}{9}(4-3 x)^{1 \frac{1}{2}} \cdot x\right]_{0}^{1}-\int_{0}^{1}-\frac{2}{9}(4-3 x)^{1 \frac{1}{2}} \mathrm{~d} x \\
& =-\frac{2}{9}+\frac{2}{9}\left[-\frac{2}{15}(4-3 x)^{2 \frac{1}{2}}\right]_{0}^{1}=\frac{2}{9}\left(-1-\frac{2}{15}+\frac{64}{15}\right)=\frac{2}{9} \cdot \frac{47}{15}
\end{aligned}
$$

The original integral is equal to

$$
-\frac{2}{3}+\frac{4}{3} \cdot \frac{2}{9} \cdot \frac{47}{15}=\frac{106}{405} .
$$

11.13 In order to evaluate the integral

$$
\int_{1}^{\mathrm{e}} \sqrt{x} \ln x \mathrm{~d} x
$$

we use the method of Partial Integration with $f(x)=\ln x$ and $g^{\prime}(x)=\sqrt{x}$. Then

$$
\begin{aligned}
\int_{1}^{\mathrm{e}} \sqrt{x} \ln x \mathrm{~d} x & =\left[\ln x \cdot \frac{2}{3} x^{1 \frac{1}{2}}\right]_{1}^{\mathrm{e}}-\int_{1}^{\mathrm{e}} \frac{2}{3} x^{1 \frac{1}{2}} \cdot \frac{1}{x} \mathrm{~d} x=\frac{2}{3} \mathrm{e} \sqrt{\mathrm{e}}-\int_{1}^{\mathrm{e}} \frac{2}{3} x^{\frac{1}{2}} \mathrm{~d} x \\
& =\frac{2}{3} \mathrm{e} \sqrt{\mathrm{e}}-\left[\frac{4}{9} x^{1 \frac{1}{2}}\right]_{1}^{\mathrm{e}}=\frac{2}{3} \mathrm{e} \sqrt{\mathrm{e}}-\frac{4}{9} \mathrm{e} \sqrt{\mathrm{e}}+\frac{4}{9}=\frac{2}{9} \mathrm{e} \sqrt{\mathrm{e}}+\frac{4}{9}
\end{aligned}
$$

