
9.16 As noticed in Exercise 14, f ′′(x) =
2

x3
, for x 6= 0.

Since f ′′(x) > 0 for all x > 0, the function is convex on the interval (0,∞).

Since f ′′(x) < 0 for all x < 0, the function is concave on the interval (−∞, 0).

9.18 (a) For x > 0, f ′(x) =
1

2
√
x

and f ′′(x) = − 1

4x
√
x
. So f(1) = 1, f ′(1) = 1

2 and f ′′(1) = − 1
4 .

Hence, the Taylor polynomial p2 of degree 2 for f at 1 is given by

p2(x) = 1 + 1
2 (x− 1)− 1

8 (x− 1)2.

(b) For x 6= − 1
2 , f

′(x) = − 6

(1 + 2x)2
and f ′′(x) =

24

(1 + 2x)3
. So f(1) = 1, f ′(1) = − 6

9 and f ′′(1) = 24
27 .

Hence, the Taylor polynomial p2 of degree 2 for f at 1 is given by

p2(x) = 1− 2
3 (x− 1) + 8

9 (x− 1)2.

9.20 (b) As f ′′(x) = − 1
4x

−1 1

2 ,

f (3)(x) = 3
8x

−2 1

2 =
3

8x2
√
x
.

Hence, f (3)(1) = 3
8 and the Taylor polynomial p3 of degree 3 for f at 1 is given by

p3(x) = 1 + 1
2 (x− 1)− 1

8 (x− 1)2 + 1
16 (x− 1)3.

9.21 (a) According to the Arithmetic Rules for limits of functions,

lim
x→0

x2

2x2 + x
= lim

x→0

x

2x+ 2
=

lim
x→0

x

lim
x→0

[2x+ 2]
=

0

2
= 0.

(b) Note that for x 6= 2,

2x2 − x− 6

3x2 − 7x+ 2
=

2
(

x+ 1 1
2

)

(x− 2)

3
(

x− 1
3

)

(x− 2)
= 2

3

x+ 1 1
2

x− 1
3

.

So, according to the Arithmetic Rules for limits of functions,

lim
x→2

2x2 − x− 6

3x2 − 7x+ 2
= lim

x→2

2
3

x+ 1 1
2

x− 1
3

= 7
5 .

9.22 We introduce the differentiable function f on (−1, 1), defined by f(x) =
√
x+ 1 − 1 + 1

2x and the

differentiable function g, defined by g(x) = x. Then g′ = 1 6= 0 and f(0) = g(0) = 0. So the weak form

of de l’Hôpitals Rule implies that

lim
x→0

√
x+ 1− 1 + 1

2x

x
=

f ′(0)

g′(0)
=

1

2
√
0 + 1

+ 1
2 = 1.

9.24 The numerator and denominator of the fraction
1

2x+ cosx
are not equal to zero at x = 0. So we may

not apply de l’Hôpital’s rule.



9.32 Assume that x > a.

The function f restricted to the interval [a, x] is continuous and differentiable on the interval (a, x).

According to the Mean Value Theorem, there exists a τ ∈ (a, x) such that

f(x)− f(a)

x− a
= f ′(τ) =⇒ f(x)− f(a) = f ′(τ)(x − a) ≥ 0 =⇒ f(x) ≥ f(a).

8.34 Note that

x3 − 7x2 + 16x− 12 = (x− 2)2(x− 3)

x2 − 4x+ 4 = (x− 2)2.and

By consequence

lim
x→2

x3 − 7x2 + 16x− 12

x2 − 4x+ 4
= lim

x→2

(x − 2)2(x− 3)

(x− 2)2
= lim

x→2
(x− 3) = −1.

9.36 Because the functions h and h′ are continuous, the Arithmetic Rules for differentiable functions imply

that the function g is continuous. Hence, the restriction of the function g to the interval [0, 2] is continuous

and differentiable on the interval (0, 2).

Since, furthermore, g(0) = g(2), Rolle’s Theorem implies the existence of a τ ∈ (0, 2) such that

g′(τ) = 0 =⇒ h′(τ) + 3h′′(τ) = 0 =⇒ h′(τ) = −3h′′(τ).

Since

0 ≤ h′′(τ) ≤ 1
3 =⇒ −1 ≤ −3h′′(τ) ≤ 0,

it follows that −1 ≤ h′(τ) ≤ 0.

Because h′′ ≥ 0, the function h′ is increasing. Then the inequality τ < 2 implies that

h′(2) ≥ h′(τ) ≥ −1.

9.37 Since f(0) = 1 and f ′(0) = f(0) = 1, the linear approximation `0 of f at 0 is given by

`0(x) = f(0) + f ′(0)x = 1 + x.

Further, f ′′ = f ′ = f . So for x 6= 0 the remainder is

r(x) =
f ′′(τ)

2
x2 = 1

2f(τ)x
2,

where τ is between 0 and x.



11.7 Since we can write the denominator of the fraction

x

x2 − 5x+ 6

as x2 − 5x+ 6 = (x− 2)(x− 3), we try to find constants A and B such that for all x 6= 2, 3

x

(x− 2)(x− 3)
=

A

x− 2
+

B

x− 3
⇐⇒ x

(x− 2)(x− 3)
=

A(x− 3) +B(x − 2)

(x− 2)(x− 3)

⇐⇒ x

(x− 2)(x− 3)
=

(A+B)x− 3A− 2B

(x− 2)(x− 3)

⇐⇒ x = (A+B)x− 3A− 2B.

If we choose x = 0, then we find that −3A− 2B = 0. Hence, x = (A + B)x for all x 6= 2, 3. This leads

to A+B = 1 (as one can see by choosing x = 1). In other words: A and B are solutions of the system

{

A + B = 1

−3A − 2B = 0
⇐⇒

{

2A + 2B = 2

−3A − 2B = 0
⇐⇒

{

A = −2

−3A − 2B = 0
⇐⇒

{

A = −2

B = 3.

Hence,
∫ 1

0

x

x2 − 5x+ 6
dx =

∫ 1

0

( −2

x− 2
+

3

x− 3

)

dx =
[

−2 ln |x− 2|+ 3 ln |x− 3|
]1

0

= 3 ln 2 + 2 ln 2− 3 ln 3 = ln
25

33
= ln 32

27 .

11.14 Note that for x 6= 0, 1,−1

x5 + 2x2 + 1

x3 − x
=

x2(x3 − x) + x3 − x+ x+ 2x2 + 1

x3 − x
= x2 + 1 +

2x2 + x+ 1

x3 − x
.

We try to find constants A,B and C satisfying

2x2 + x+ 1

x(x − 1)(x+ 1)
=

A

x
+

B

x− 1
+

C

x+ 1
.

Hence, for all x 6= 0, 1,−1

2x2 + x+ 1 = A(x2 − 1) +Bx(x+ 1) + Cx(x − 1) ⇐⇒ 2x2 + x+ 1 = (A+B + C)x2 + (B − C)x−A.

So A,B and C satisfy the system











A + B + C = 2

B − C = 1

−A = 1

⇐⇒











A = −1

B = 2

C = 1.

Hence,

∫ 3

2

x5 + 2x2 + 1

x3 − x
dx =

∫ 3

2

(

x2 + 1− 1

x
+

2

x− 1
+

1

x+ 1

)

dx

=
[

1
3x

3 + x− lnx+ 2 ln(x − 1) + ln(x+ 1)
]3

2

= 9 + 3− ln 3 + 2 ln 2 + ln 4− 8
3 − 2 + ln 2− ln 3 = 7 1

3 + ln 32
9 .



11.15 Note that
∫ 4

3

1

√

x− 1

x5
dx =

∫ 4

3

1

1

x2

√

1− 1

x
dx.

We use the Method of Substitution with ϕ(x) = 1− 1

x
. Then ϕ′(x) =

1

x2
. So we obtain

∫ 4

3

1

√

x− 1

x5
dx =

∫ 4

3

1

1

x2

√

1− 1

x
dx =

∫ 4

3

1

√

ϕ(x) ϕ′(x) dx = 2
3

[

ϕ(x)1
1

2

]
4

3

1

= 2
3ϕ(

4
3 )

1 1

2 − 2
3ϕ(1)

1 1

2 = 1
12 .


