9.16 As noticed in Exercise 14, $f^{\prime \prime}(x)=\frac{2}{x^{3}}$, for $x \neq 0$.

Since $f^{\prime \prime}(x)>0$ for all $x>0$, the function is convex on the interval $(0, \infty)$.
Since $f^{\prime \prime}(x)<0$ for all $x<0$, the function is concave on the interval $(-\infty, 0)$.
9.18 (a) For $x>0, f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$ and $f^{\prime \prime}(x)=-\frac{1}{4 x \sqrt{x}}$. So $f(1)=1, f^{\prime}(1)=\frac{1}{2}$ and $f^{\prime \prime}(1)=-\frac{1}{4}$.

Hence, the Taylor polynomial p_{2} of degree 2 for f at 1 is given by

$$
p_{2}(x)=1+\frac{1}{2}(x-1)-\frac{1}{8}(x-1)^{2} .
$$

(b) For $x \neq-\frac{1}{2}, f^{\prime}(x)=-\frac{6}{(1+2 x)^{2}}$ and $f^{\prime \prime}(x)=\frac{24}{(1+2 x)^{3}}$. So $f(1)=1, f^{\prime}(1)=-\frac{6}{9}$ and $f^{\prime \prime}(1)=\frac{24}{27}$.

Hence, the Taylor polynomial p_{2} of degree 2 for f at 1 is given by

$$
p_{2}(x)=1-\frac{2}{3}(x-1)+\frac{8}{9}(x-1)^{2} .
$$

9.20 (b) As $f^{\prime \prime}(x)=-\frac{1}{4} x^{-1 \frac{1}{2}}$,

$$
f^{(3)}(x)=\frac{3}{8} x^{-2 \frac{1}{2}}=\frac{3}{8 x^{2} \sqrt{x}} .
$$

Hence, $f^{(3)}(1)=\frac{3}{8}$ and the Taylor polynomial p_{3} of degree 3 for f at 1 is given by

$$
p_{3}(x)=1+\frac{1}{2}(x-1)-\frac{1}{8}(x-1)^{2}+\frac{1}{16}(x-1)^{3} .
$$

9.21 (a) According to the Arithmetic Rules for limits of functions,

$$
\lim _{x \rightarrow 0} \frac{x^{2}}{2 x^{2}+x}=\lim _{x \rightarrow 0} \frac{x}{2 x+2}=\frac{\lim _{x \rightarrow 0} x}{\lim _{x \rightarrow 0}[2 x+2]}=\frac{0}{2}=0
$$

(b) Note that for $x \neq 2$,

$$
\frac{2 x^{2}-x-6}{3 x^{2}-7 x+2}=\frac{2\left(x+1 \frac{1}{2}\right)(x-2)}{3\left(x-\frac{1}{3}\right)(x-2)}=\frac{2}{3} \frac{x+1 \frac{1}{2}}{x-\frac{1}{3}} .
$$

So, according to the Arithmetic Rules for limits of functions,

$$
\lim _{x \rightarrow 2} \frac{2 x^{2}-x-6}{3 x^{2}-7 x+2}=\lim _{x \rightarrow 2} \frac{2}{3} \frac{x+1 \frac{1}{2}}{x-\frac{1}{3}}=\frac{7}{5} .
$$

9.22 We introduce the differentiable function f on $(-1,1)$, defined by $f(x)=\sqrt{x+1}-1+\frac{1}{2} x$ and the differentiable function g, defined by $g(x)=x$. Then $g^{\prime}=1 \neq 0$ and $f(0)=g(0)=0$. So the weak form of de l'Hôpitals Rule implies that

$$
\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1+\frac{1}{2} x}{x}=\frac{f^{\prime}(0)}{g^{\prime}(0)}=\frac{1}{2 \sqrt{0+1}}+\frac{1}{2}=1 .
$$

9.24 The numerator and denominator of the fraction $\frac{1}{2 x+\cos x}$ are not equal to zero at $x=0$. So we may not apply de l'Hôpital's rule.
9.32 Assume that $x>a$.

The function f restricted to the interval $[a, x]$ is continuous and differentiable on the interval (a, x). According to the Mean Value Theorem, there exists a $\tau \in(a, x)$ such that

$$
\frac{f(x)-f(a)}{x-a}=f^{\prime}(\tau) \Longrightarrow f(x)-f(a)=f^{\prime}(\tau)(x-a) \geq 0 \Longrightarrow f(x) \geq f(a) .
$$

8.34 Note that
and

$$
\begin{aligned}
x^{3}-7 x^{2}+16 x-12 & =(x-2)^{2}(x-3) \\
x^{2}-4 x+4 & =(x-2)^{2} .
\end{aligned}
$$

By consequence

$$
\lim _{x \rightarrow 2} \frac{x^{3}-7 x^{2}+16 x-12}{x^{2}-4 x+4}=\lim _{x \rightarrow 2} \frac{(x-2)^{2}(x-3)}{(x-2)^{2}}=\lim _{x \rightarrow 2}(x-3)=-1
$$

9.36 Because the functions h and h^{\prime} are continuous, the Arithmetic Rules for differentiable functions imply that the function g is continuous. Hence, the restriction of the function g to the interval $[0,2]$ is continuous and differentiable on the interval $(0,2)$.

Since, furthermore, $g(0)=g(2)$, Rolle's Theorem implies the existence of a $\tau \in(0,2)$ such that

$$
g^{\prime}(\tau)=0 \Longrightarrow h^{\prime}(\tau)+3 h^{\prime \prime}(\tau)=0 \Longrightarrow h^{\prime}(\tau)=-3 h^{\prime \prime}(\tau)
$$

Since

$$
0 \leq h^{\prime \prime}(\tau) \leq \frac{1}{3} \Longrightarrow-1 \leq-3 h^{\prime \prime}(\tau) \leq 0
$$

it follows that $-1 \leq h^{\prime}(\tau) \leq 0$.
Because $h^{\prime \prime} \geq 0$, the function h^{\prime} is increasing. Then the inequality $\tau<2$ implies that

$$
h^{\prime}(2) \geq h^{\prime}(\tau) \geq-1
$$

9.37 Since $f(0)=1$ and $f^{\prime}(0)=f(0)=1$, the linear approximation ℓ_{0} of f at 0 is given by

$$
\ell_{0}(x)=f(0)+f^{\prime}(0) x=1+x
$$

Further, $f^{\prime \prime}=f^{\prime}=f$. So for $x \neq 0$ the remainder is

$$
r(x)=\frac{f^{\prime \prime}(\tau)}{2} x^{2}=\frac{1}{2} f(\tau) x^{2}
$$

where τ is between 0 and x.
11.7 Since we can write the denominator of the fraction

$$
\frac{x}{x^{2}-5 x+6}
$$

as $x^{2}-5 x+6=(x-2)(x-3)$, we try to find constants A and B such that for all $x \neq 2,3$

$$
\begin{aligned}
\frac{x}{(x-2)(x-3)}=\frac{A}{x-2}+\frac{B}{x-3} & \Longleftrightarrow \frac{x}{(x-2)(x-3)}=\frac{A(x-3)+B(x-2)}{(x-2)(x-3)} \\
& \Longleftrightarrow \frac{x}{(x-2)(x-3)}=\frac{(A+B) x-3 A-2 B}{(x-2)(x-3)} \\
& \Longleftrightarrow x=(A+B) x-3 A-2 B .
\end{aligned}
$$

If we choose $x=0$, then we find that $-3 A-2 B=0$. Hence, $x=(A+B) x$ for all $x \neq 2,3$. This leads to $A+B=1$ (as one can see by choosing $x=1$). In other words: A and B are solutions of the system

$$
\left\{\begin{array} { r }
{ A + B = 1 } \\
{ - 3 A - 2 B = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array} { r }
{ 2 A + 2 B = 2 } \\
{ - 3 A - 2 B = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array} { r }
{ A = - 2 } \\
{ - 3 A - 2 B = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
A=-2 \\
B=3 .
\end{array}\right.\right.\right.\right.
$$

Hence,

$$
\begin{aligned}
\int_{0}^{1} \frac{x}{x^{2}-5 x+6} \mathrm{~d} x & =\int_{0}^{1}\left(\frac{-2}{x-2}+\frac{3}{x-3}\right) \mathrm{d} x=[-2 \ln |x-2|+3 \ln |x-3|]_{0}^{1} \\
& =3 \ln 2+2 \ln 2-3 \ln 3=\ln \frac{2^{5}}{3^{3}}=\ln \frac{32}{27} .
\end{aligned}
$$

11.14 Note that for $x \neq 0,1,-1$

$$
\frac{x^{5}+2 x^{2}+1}{x^{3}-x}=\frac{x^{2}\left(x^{3}-x\right)+x^{3}-x+x+2 x^{2}+1}{x^{3}-x}=x^{2}+1+\frac{2 x^{2}+x+1}{x^{3}-x} .
$$

We try to find constants A, B and C satisfying

$$
\frac{2 x^{2}+x+1}{x(x-1)(x+1)}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+1} .
$$

Hence, for all $x \neq 0,1,-1$

$$
2 x^{2}+x+1=A\left(x^{2}-1\right)+B x(x+1)+C x(x-1) \Longleftrightarrow 2 x^{2}+x+1=(A+B+C) x^{2}+(B-C) x-A .
$$

So A, B and C satisfy the system

$$
\left\{\begin{array} { r l }
{ A + B + C } & { = 2 } \\
{ B - C } & { = 1 } \\
{ - A } & { = 1 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
A=-1 \\
B=2 \\
C=1
\end{array}\right.\right.
$$

Hence,

$$
\begin{aligned}
\int_{2}^{3} \frac{x^{5}+2 x^{2}+1}{x^{3}-x} \mathrm{~d} x & =\int_{2}^{3}\left(x^{2}+1-\frac{1}{x}+\frac{2}{x-1}+\frac{1}{x+1}\right) \mathrm{d} x \\
& =\left[\frac{1}{3} x^{3}+x-\ln x+2 \ln (x-1)+\ln (x+1)\right]_{2}^{3} \\
& =9+3-\ln 3+2 \ln 2+\ln 4-\frac{8}{3}-2+\ln 2-\ln 3=7 \frac{1}{3}+\ln \frac{32}{9} .
\end{aligned}
$$

11.15 Note that

$$
\int_{1}^{\frac{4}{3}} \sqrt{\frac{x-1}{x^{5}}} \mathrm{~d} x=\int_{1}^{\frac{4}{3}} \frac{1}{x^{2}} \sqrt{1-\frac{1}{x}} \mathrm{~d} x
$$

We use the Method of Substitution with $\varphi(x)=1-\frac{1}{x}$. Then $\varphi^{\prime}(x)=\frac{1}{x^{2}}$. So we obtain

$$
\begin{aligned}
\int_{1}^{\frac{4}{3}} \sqrt{\frac{x-1}{x^{5}}} \mathrm{~d} x & =\int_{1}^{\frac{4}{3}} \frac{1}{x^{2}} \sqrt{1-\frac{1}{x}} \mathrm{~d} x=\int_{1}^{\frac{4}{3}} \sqrt{\varphi(x)} \varphi^{\prime}(x) \mathrm{d} x=\frac{2}{3}\left[\varphi(x)^{1 \frac{1}{2}}\right]_{1}^{\frac{4}{3}} \\
& =\frac{2}{3} \varphi\left(\frac{4}{3}\right)^{1 \frac{1}{2}}-\frac{2}{3} \varphi(1)^{1 \frac{1}{2}}=\frac{1}{12}
\end{aligned}
$$

