
9.17 Since f(1) = 2 and f ′(1) = 0, the linear approximation ℓ1 of f at 1 is given by

ℓ1(x) = f(1) + f ′(1)(x− 1) = 2.

Further, f ′′(x) = 2x−3. So for x ∈ (0, 2) and x 6= 1 the remainder is

r(x) =
f ′′(τ)

2
(x− 1)2 =

1

τ3
(x − 1)2,

where τ is between 1 and x.

9.20 (a) As f ′(x) = 1− x−2, we get f ′′(x) = 2x−3 and f (3)(x) = −6x−4. Hence, f ′′(1) = 2 and f (3)(1) = −6 and

the Taylor polynomial p3 of degree 3 for f at 1 is given by

p3(x) = 2 + (x− 1)2 − (x − 1)3.

9.23 (a) We introduce the functions f and g on the interval (0,∞), defined by f(x) = lnx and g(x) = x− 1.

Note that x 7→ lnx and x 7→ x − 1 are continuous functions on the interval (0,∞). Moreover, f(1) =

g(1) = 0.

The functions f and g are differentiable and f ′(x) =
1

x
and g′(x) = 1, so that

lim
x→1

f ′(x)

g′(x)
= lim

x→1

1

x
= 1.

According to the weak form of de l’Hôpital’s rule, lim
x→1

f(x)

g(x)
= 1.

(b) We introduce the functions f and g on the interval (0,∞), defined by f(x) = | lnx| and g(x) = |x2 − 1|.

Note that x 7→ lnx and x 7→ x2 − 1 are continuous functions on the interval (0,∞). Then, according to

Exercise 5.12, f and g are continuous functions on the interval (0,∞).

Moreover, f(1) = g(1) = 0.

The function f is differentiable for x 6= 1 and

f ′(x) =











1

x
if x > 1

−
1

x
if 0 < x < 1.

The function g is differentiable for x 6= 1 and

g′(x) =

{

2x if x > 1

−2x if 0 < x < 1.

Since for x 6= 1
f ′(x)

g′(x)
=

1

2x2
,

the following holds:

lim
x→1

f ′(x)

g′(x)
= lim

x→1

1

2x2
= 1

2 .

According to the strong form of de l’Hôpital’s rule, lim
x→1

f(x)

g(x)
= 1

2 .



Alternative Instead you could evaluate the limit lim
x→1

lnx

x2 − 1
first. As before you can prove that this

limit equals 1
2 . Then use the result that

lim
x→1

| lnx|

|x2 − 1|
= lim

x→1

∣

∣

∣

lnx

x2 − 1

∣

∣

∣
=

∣

∣

1
2

∣

∣ = 1
2 .

9.27 Note that p(0) = b < 0 and

p
(

−
b

a

)

= −
b3

a3
−

b

a
· a+ b = −

b3

a3
> 0.

The function p restricted to the interval
[

0,−
b

a

]

is continuous. Hence, the Intermediate Value Theorem

implies that a τ ∈
(

0,−
b

a

)

exists such that p(τ) = 0.

Finally, as p′(x) = 3x2 + a > 0 for all x, the function p is strictly increasing. Hence, p has a unique zero.

9.33 Let x > 0. The function f restricted to the interval [x, x + 2] is continuous and differentiable on the

interval (x, x + 2). According to the Mean Value Theorem, there exists a τ ∈ (x, x + 2) such that

f ′(τ) =
f(x+ 2)− f(x)

x+ 2− x
= 1

2 [f(x+ 2)− f(x)].

Hence,

x2
(

f(x+ 2)− f(x)
)

= 2x2f ′(τ) =
2x2

1 + τ2
.

Since 0 < x < τ < x+ 2, it follows that 1 + x2 < 1 + τ2 < 1 + (x+ 2)2. By consequence,

2x2

1 + (x+ 2)2
< x2

(

f(x+ 2)− f(x)
)

<
2x2

1 + x2
.

Because the left-hand side and right-hand side of this inequality go to 2 as x → ∞, the limit of the

’sandwiched’ expression is also 2.

9.38 Since f(0) = f ′(0) = 0, the linear approximation ℓ0 of the function f at 0 is given by

ℓ0(x) = f(0) + f ′(0)x = 0.

So ℓ0 = 0. As f ′′ = 2, for x ∈
(

− 1
2 ,

1
2

)

and x 6= 0 the remainder r satisfies

r(x) =
f ′′(τ)

2
x2 = x2 < 1

4 ,

where τ is between 0 and x.

9.39 (a) As (x− 1)2 = 0 ⇐⇒ x = 1, the domain of th function is IR \ {1}.

(b) For x 6= 1,

f ′(x) =
(x− 1)2 · 1− x · 2(x− 1)

(x− 1)4
=

x− 1− 2x

(x− 1)3
= −

1 + x

(x− 1)3

and

f ′′(x) = −
(x− 1)3 · 1− (1 + x) · 3(x− 1)2

(x− 1)6
= −

x− 1− 3(1 + x)

(x− 1)4
=

2x+ 4

(x− 1)4
.



(c) As f ′(x) = 0 ⇐⇒ x = −1 and f ′ switches sign at −1 from negative to positive, the function has a

minimum at −1.

(d) Note that f ′′(x) = 0 ⇐⇒ x = −2. As f ′′ < 0 on the interval (−∞,−2), the function is concave on this

interval. As f ′′ > 0 on the intervals (−2, 1) and (1,∞), the function is convex on these intervals.

(e) As, for x 6= 1,

f(x) =
x

(x− 1)2
=

x− 1 + 1

(x − 1)2
=

1

x− 1
+

1

(x− 1)2
,

the two limits lim
x→−∞

f(x) and lim
x→∞

f(x) are both equal to 0.

(f)

x

y

−1−2−3

2 3

3
f

11.16 Note that for x > 0

x3

x+ 1
=

x2(x + 1)− x2

x+ 1
=

x2(x+ 1)− x(x + 1) + x+ 1− 1

x+ 1
= x2 − x+ 1−

1

x+ 1
.

Hence,
∫ 1

0

x3

x+ 1
dx =

∫ 1

0

(

x2 − x+ 1−
1

x+ 1

)

dx =
[

1
3x

3 − 1
2x

2 + x− ln(x+ 1)
]1

0

= 1
3 − 1

2 + 1− ln 2 = 5
6 − ln 2.

11.17 In order to evaluate the integral

∫ 1

0

x3

(1 + x2)3
dx = 1

2

∫ 1

0

x2

(1 + x2)3
· 2x dx,

we use the Method of Substitution with ϕ(x) = 1 + x2. Then

∫ 1

0

x3

(1 + x2)3
dx = 1

2

∫ 1

0

x2

(1 + x2)3
· 2x dx = 1

2

∫ 1

0

ϕ(x) − 1

ϕ(x)3
· ϕ′(x) dx

= 1
2

∫ 1

0

( 1

ϕ(x)2
−

1

ϕ(x)3

)

· ϕ′(x) dx = 1
2

[

−ϕ(x)−1 + 1
2ϕ(x)

−2
]1

0

= 1
2

(

−
1

ϕ(1)
+

1

2ϕ(1)2
+

1

ϕ(0)
−

1

2ϕ(0)2

)

= 1
16 .


