9.17 Since $f(1)=2$ and $f^{\prime}(1)=0$, the linear approximation ℓ_{1} of f at 1 is given by

$$
\ell_{1}(x)=f(1)+f^{\prime}(1)(x-1)=2 .
$$

Further, $f^{\prime \prime}(x)=2 x^{-3}$. So for $x \in(0,2)$ and $x \neq 1$ the remainder is

$$
r(x)=\frac{f^{\prime \prime}(\tau)}{2}(x-1)^{2}=\frac{1}{\tau^{3}}(x-1)^{2}
$$

where τ is between 1 and x.
9.20 (a) As $f^{\prime}(x)=1-x^{-2}$, we get $f^{\prime \prime}(x)=2 x^{-3}$ and $f^{(3)}(x)=-6 x^{-4}$. Hence, $f^{\prime \prime}(1)=2$ and $f^{(3)}(1)=-6$ and the Taylor polynomial p_{3} of degree 3 for f at 1 is given by

$$
p_{3}(x)=2+(x-1)^{2}-(x-1)^{3} .
$$

9.23 (a) We introduce the functions f and g on the interval $(0, \infty)$, defined by $f(x)=\ln x$ and $g(x)=x-1$.

Note that $x \mapsto \ln x$ and $x \mapsto x-1$ are continuous functions on the interval $(0, \infty)$. Moreover, $f(1)=$ $g(1)=0$.
The functions f and g are differentiable and $f^{\prime}(x)=\frac{1}{x}$ and $g^{\prime}(x)=1$, so that

$$
\lim _{x \rightarrow 1} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow 1} \frac{1}{x}=1
$$

According to the weak form of de l'Hôpital's rule, $\lim _{x \rightarrow 1} \frac{f(x)}{g(x)}=1$.
(b) We introduce the functions f and g on the interval $(0, \infty)$, defined by $f(x)=|\ln x|$ and $g(x)=\left|x^{2}-1\right|$.

Note that $x \mapsto \ln x$ and $x \mapsto x^{2}-1$ are continuous functions on the interval $(0, \infty)$. Then, according to Exercise 5.12, f and g are continuous functions on the interval $(0, \infty)$.
Moreover, $f(1)=g(1)=0$.
The function f is differentiable for $x \neq 1$ and

$$
f^{\prime}(x)= \begin{cases}\frac{1}{x} & \text { if } x>1 \\ -\frac{1}{x} & \text { if } 0<x<1\end{cases}
$$

The function g is differentiable for $x \neq 1$ and

$$
g^{\prime}(x)= \begin{cases}2 x & \text { if } x>1 \\ -2 x & \text { if } 0<x<1\end{cases}
$$

Since for $x \neq 1$

$$
\frac{f^{\prime}(x)}{g^{\prime}(x)}=\frac{1}{2 x^{2}}
$$

the following holds:

$$
\lim _{x \rightarrow 1} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow 1} \frac{1}{2 x^{2}}=\frac{1}{2}
$$

According to the strong form of de l'Hôpital's rule, $\lim _{x \rightarrow 1} \frac{f(x)}{g(x)}=\frac{1}{2}$.

Alternative Instead you could evaluate the limit $\lim _{x \rightarrow 1} \frac{\ln x}{x^{2}-1}$ first. As before you can prove that this limit equals $\frac{1}{2}$. Then use the result that

$$
\lim _{x \rightarrow 1} \frac{|\ln x|}{\left|x^{2}-1\right|}=\lim _{x \rightarrow 1}\left|\frac{\ln x}{x^{2}-1}\right|=\left|\frac{1}{2}\right|=\frac{1}{2}
$$

9.27 Note that $p(0)=b<0$ and

$$
p\left(-\frac{b}{a}\right)=-\frac{b^{3}}{a^{3}}-\frac{b}{a} \cdot a+b=-\frac{b^{3}}{a^{3}}>0 .
$$

The function p restricted to the interval $\left[0,-\frac{b}{a}\right]$ is continuous. Hence, the Intermediate Value Theorem implies that a $\tau \in\left(0,-\frac{b}{a}\right)$ exists such that $p(\tau)=0$.
Finally, as $p^{\prime}(x)=3 x^{2}+a>0$ for all x, the function p is strictly increasing. Hence, p has a unique zero.
9.33 Let $x>0$. The function f restricted to the interval $[x, x+2]$ is continuous and differentiable on the interval $(x, x+2)$. According to the Mean Value Theorem, there exists a $\tau \in(x, x+2)$ such that

$$
f^{\prime}(\tau)=\frac{f(x+2)-f(x)}{x+2-x}=\frac{1}{2}[f(x+2)-f(x)] .
$$

Hence,

$$
x^{2}(f(x+2)-f(x))=2 x^{2} f^{\prime}(\tau)=\frac{2 x^{2}}{1+\tau^{2}}
$$

Since $0<x<\tau<x+2$, it follows that $1+x^{2}<1+\tau^{2}<1+(x+2)^{2}$. By consequence,

$$
\frac{2 x^{2}}{1+(x+2)^{2}}<x^{2}(f(x+2)-f(x))<\frac{2 x^{2}}{1+x^{2}} .
$$

Because the left-hand side and right-hand side of this inequality go to 2 as $x \rightarrow \infty$, the limit of the 'sandwiched' expression is also 2.
9.38 Since $f(0)=f^{\prime}(0)=0$, the linear approximation ℓ_{0} of the function f at 0 is given by

$$
\ell_{0}(x)=f(0)+f^{\prime}(0) x=0 .
$$

So $\ell_{0}=0$. As $f^{\prime \prime}=2$, for $x \in\left(-\frac{1}{2}, \frac{1}{2}\right)$ and $x \neq 0$ the remainder r satisfies

$$
r(x)=\frac{f^{\prime \prime}(\tau)}{2} x^{2}=x^{2}<\frac{1}{4}
$$

where τ is between 0 and x.
9.39 (a) As $(x-1)^{2}=0 \Longleftrightarrow x=1$, the domain of th function is $\mathbb{R} \backslash\{1\}$.
(b) For $x \neq 1$,

$$
f^{\prime}(x)=\frac{(x-1)^{2} \cdot 1-x \cdot 2(x-1)}{(x-1)^{4}}=\frac{x-1-2 x}{(x-1)^{3}}=-\frac{1+x}{(x-1)^{3}}
$$

and

$$
f^{\prime \prime}(x)=-\frac{(x-1)^{3} \cdot 1-(1+x) \cdot 3(x-1)^{2}}{(x-1)^{6}}=-\frac{x-1-3(1+x)}{(x-1)^{4}}=\frac{2 x+4}{(x-1)^{4}} .
$$

(c) As $f^{\prime}(x)=0 \Longleftrightarrow x=-1$ and f^{\prime} switches sign at -1 from negative to positive, the function has a minimum at -1 .
(d) Note that $f^{\prime \prime}(x)=0 \Longleftrightarrow x=-2$. As $f^{\prime \prime}<0$ on the interval $(-\infty,-2)$, the function is concave on this interval. As $f^{\prime \prime}>0$ on the intervals $(-2,1)$ and $(1, \infty)$, the function is convex on these intervals.
(e) As, for $x \neq 1$,

$$
f(x)=\frac{x}{(x-1)^{2}}=\frac{x-1+1}{(x-1)^{2}}=\frac{1}{x-1}+\frac{1}{(x-1)^{2}},
$$

the two limits $\lim _{x \rightarrow-\infty} f(x)$ and $\lim _{x \rightarrow \infty} f(x)$ are both equal to 0 .
(f)

11.16 Note that for $x>0$

$$
\frac{x^{3}}{x+1}=\frac{x^{2}(x+1)-x^{2}}{x+1}=\frac{x^{2}(x+1)-x(x+1)+x+1-1}{x+1}=x^{2}-x+1-\frac{1}{x+1} .
$$

Hence,

$$
\begin{aligned}
\int_{0}^{1} \frac{x^{3}}{x+1} \mathrm{~d} x & =\int_{0}^{1}\left(x^{2}-x+1-\frac{1}{x+1}\right) \mathrm{d} x=\left[\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+x-\ln (x+1)\right]_{0}^{1} \\
& =\frac{1}{3}-\frac{1}{2}+1-\ln 2=\frac{5}{6}-\ln 2
\end{aligned}
$$

11.17 In order to evaluate the integral

$$
\int_{0}^{1} \frac{x^{3}}{\left(1+x^{2}\right)^{3}} \mathrm{~d} x=\frac{1}{2} \int_{0}^{1} \frac{x^{2}}{\left(1+x^{2}\right)^{3}} \cdot 2 x \mathrm{~d} x
$$

we use the Method of Substitution with $\varphi(x)=1+x^{2}$. Then

$$
\begin{aligned}
\int_{0}^{1} \frac{x^{3}}{\left(1+x^{2}\right)^{3}} \mathrm{~d} x & =\frac{1}{2} \int_{0}^{1} \frac{x^{2}}{\left(1+x^{2}\right)^{3}} \cdot 2 x \mathrm{~d} x=\frac{1}{2} \int_{0}^{1} \frac{\varphi(x)-1}{\varphi(x)^{3}} \cdot \varphi^{\prime}(x) \mathrm{d} x \\
& =\frac{1}{2} \int_{0}^{1}\left(\frac{1}{\varphi(x)^{2}}-\frac{1}{\varphi(x)^{3}}\right) \cdot \varphi^{\prime}(x) \mathrm{d} x=\frac{1}{2}\left[-\varphi(x)^{-1}+\frac{1}{2} \varphi(x)^{-2}\right]_{0}^{1} \\
& =\frac{1}{2}\left(-\frac{1}{\varphi(1)}+\frac{1}{2 \varphi(1)^{2}}+\frac{1}{\varphi(0)}-\frac{1}{2 \varphi(0)^{2}}\right)=\frac{1}{16}
\end{aligned}
$$

