10.1 (a) For $1<p \leq 4, A(p)$ denotes the area of the region bounded by the horizontal axis, the vertical lines $x=1$ and $x=p$ and the graph of the function $g: x \rightarrow 3$. So the 'area function' is given by

$$
A(p)=3(p-1)
$$

(b) For $1<p \leq 5, A(p)$ denotes the area of the region bounded by the horizontal axis, the vertical lines $x=1$ and $x=p$ and the graph of the function $h: x \rightarrow x$. So the 'area function' is given by

$$
A(p)=(p-1) \times 1+\frac{1}{2}(p-1) \times(p-1)=\frac{1}{2} p^{2}-\frac{1}{2}
$$

10.2 (a) The integral $\int_{1}^{3} 3 \mathrm{~d} x$ represents the area of the region

As the area of this region is 6 , the given integral is equal to 6 .
(b) The integral $\int_{-2}^{1}(t+3) \mathrm{d} t$ represents the area of the region

As the area of this region is $7 \frac{1}{2}$, the given integral is equal to $7 \frac{1}{2}$.
(c) The integral $\int_{0}^{1} \sqrt{1-x^{2}} \mathrm{~d} x$ represents the area of the region

As the area of this region is $\frac{1}{4} \pi$, the given integral is equal to $\frac{1}{4} \pi$.
10.3 (a) The integral

$$
\int_{0}^{3}(x-2) \mathrm{d} x=\left[\frac{1}{2} x^{2}-2 x\right]_{0}^{3}=4 \frac{1}{2}-6=-1 \frac{1}{2}
$$

represents the area $\frac{1}{2}$ of the triangle above the horizontal axis minus the area 2 of the triangle below the horizontal axis.

(b) The integral

$$
\int_{2}^{3}(t-2) \mathrm{d} t=\left[\frac{1}{2} t^{2}-2 t\right]_{2}^{3}=4 \frac{1}{2}-6-2+4=\frac{1}{2}
$$

represents the area of the triangle above the horizontal axis (in the figure of part (a)).
10.6 We introduce the continuous function g on the interval $[0,1]$, defined by

$$
g(t)=t^{2}
$$

Then

$$
G(x)=\int_{0}^{x} f\left(t^{2}\right) \mathrm{d} t=\int_{0}^{x} f(g(t)) \mathrm{d} t=\int_{0}^{x}(f \circ g)(t) \mathrm{d} t
$$

and the Fundamental Theorem, part I implies that, for $0<x<1$,

$$
G^{\prime}(x)=(f \circ g)(x)=f(g(x))=f\left(x^{2}\right) .
$$

10.7 We introduce the differentiable functions g and h on the interval [0,1], defined by
and

$$
\begin{aligned}
& g(x)=x^{2} \\
& h(x)=\int_{0}^{x} f(t) \mathrm{d} t
\end{aligned}
$$

Then $G(x)=h(g(x))$ for all $x \in[0,1]$. In view of the Fundamental Theorem, part I and the Chain Rule, the function G is differentiable and for $0<x<1$,

$$
G^{\prime}(x)=h^{\prime}(g(x)) \cdot g^{\prime}(x)=f(g(x)) \cdot 2 x=f\left(x^{2}\right) \cdot 2 x
$$

10.10 (a) Let $\varepsilon>0$. Choose $H=\ln \left(\frac{2}{\varepsilon}\right)^{2}$. Then

$$
t>H \Longrightarrow \mathrm{e}^{t}>\mathrm{e}^{H}=\left(\frac{2}{\varepsilon}\right)^{2} \Longrightarrow \sqrt{\mathrm{e}^{t}}>\frac{2}{\varepsilon} \Longrightarrow \frac{1}{\sqrt{\mathrm{e}^{t}}}<\frac{\varepsilon}{2} \Longrightarrow \frac{2}{\sqrt{\mathrm{e}^{t}}}<\varepsilon \Longrightarrow\left|\frac{2}{\sqrt{\mathrm{e}^{t}}}-0\right|<\varepsilon
$$

This proves that $\lim _{t \rightarrow \infty} \frac{2}{\sqrt{\mathrm{e}^{t}}}=0$.
(b) Let $\varepsilon>0$. Note that for all $x \geq 0$,

$$
0<\frac{x}{\mathrm{e}^{x}}<\frac{2}{\sqrt{\mathrm{e}^{x}}}
$$

So for $x>H, 0<\frac{x}{\mathrm{e}^{x}}<\frac{2}{\sqrt{\mathrm{e}^{x}}}<\varepsilon$, which implies that $\left|\frac{x}{\mathrm{e}^{x}}-0\right|<\varepsilon$.
This proves that $\lim _{x \rightarrow \infty} \frac{x}{\mathrm{e}^{x}}=0$.
10.12 (a) According to the Arithmetic Rules for limits

$$
\lim _{x \rightarrow \infty} \frac{2+\mathrm{e}^{x}}{1+3 \mathrm{e}^{x}}=\lim _{x \rightarrow \infty} \frac{1+2 \mathrm{e}^{-x}}{3+\mathrm{e}^{-x}}=\frac{1}{3}
$$

Note that $\lim _{x \rightarrow \infty}\left[1+2 \mathrm{e}^{-x}\right]=1$ and $\lim _{x \rightarrow \infty}\left[3+\mathrm{e}^{-x}\right]=3$.
(b) If $f(x)=\mathrm{e}^{2 x}-\mathrm{e}^{x}$ and $g(x)=x$, then the functions f and g are differentiable, $g^{\prime}(x)=1 \neq 0$ for all x and $f(0)=g(0)=0$. Furthermore, $f^{\prime}(x)=2 \mathrm{e}^{2 x}-\mathrm{e}^{x}$. So, in view of de l'Hôpital's Rule (weak form),

$$
\lim _{x \rightarrow 0} \frac{\mathrm{e}^{2 x}-\mathrm{e}^{x}}{x}=\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\frac{f^{\prime}(0)}{g^{\prime}(0)}=1
$$

11.8 (a) For $b>1$

$$
\begin{aligned}
\int_{1}^{b} x \mathrm{e}^{-x} \mathrm{~d} x & =\left[-x \mathrm{e}^{-x}\right]_{1}^{b}-\int_{1}^{b}-\mathrm{e}^{-x} \mathrm{~d} x=-b \mathrm{e}^{-b}+\mathrm{e}^{-1}-\left[\mathrm{e}^{-x}\right]_{1}^{b} \\
& =-b \mathrm{e}^{-b}+\mathrm{e}^{-1}-\mathrm{e}^{-b}+\mathrm{e}^{-1}=\frac{2}{\mathrm{e}}-\mathrm{e}^{-b}-b \mathrm{e}^{-b}
\end{aligned}
$$

Because $\lim _{b \rightarrow \infty}\left(\frac{2}{\mathrm{e}}-\mathrm{e}^{-b}-b \mathrm{e}^{-b}\right)=\frac{2}{\mathrm{e}}$,

$$
\int_{1}^{\infty} x \mathrm{e}^{-x} \mathrm{~d} x=\frac{2}{\mathrm{e}}
$$

(b) For $0<b<1$ and with $\varphi(x)=1-x$

$$
\int_{0}^{b} \frac{1}{\sqrt{1-x}} \mathrm{~d} x=\int_{0}^{b}-\frac{1}{\sqrt{\varphi(x)}} \cdot \varphi^{\prime}(x) \mathrm{d} x=[-2 \sqrt{\varphi(x)}]_{0}^{b}=[-2 \sqrt{1-x}]_{0}^{b}=-2 \sqrt{1-b}+2
$$

Because $\lim _{b \rightarrow 1}(-2 \sqrt{1-b}+2)=2$,

$$
\int_{0}^{1} \frac{1}{\sqrt{1-x}} \mathrm{~d} x=2
$$

11.10 As, for $b>0$,

$$
\int_{0}^{b} \frac{1}{1+x^{2}} \mathrm{~d} x=[\arctan x]_{0}^{b}=\arctan b
$$

and $\lim _{b \rightarrow \infty} \arctan b=\frac{1}{2} \pi$,

$$
\int_{0}^{\infty} \frac{1}{1+x^{2}} \mathrm{~d} x=\frac{1}{2} \pi
$$

Similarly,

$$
\int_{-\infty}^{0} \frac{1}{1+x^{2}} \mathrm{~d} x=\lim _{a \rightarrow-\infty} \int_{a}^{0} \frac{1}{1+x^{2}} \mathrm{~d} x=\lim _{a \rightarrow-\infty}[\arctan x]_{a}^{0}=-\lim _{a \rightarrow-\infty} \arctan a=\frac{1}{2} \pi
$$

Hence,

$$
\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} \mathrm{~d} x=\int_{-\infty}^{0} \frac{1}{1+x^{2}} \mathrm{~d} x+\int_{0}^{\infty} \frac{1}{1+x^{2}} \mathrm{~d} x=\frac{1}{2} \pi+\frac{1}{2} \pi=\pi
$$

11.18 Note that

$$
\begin{aligned}
\int_{0}^{3} x \sqrt{1+x} \mathrm{~d} x & =\int_{0}^{3}((1+x) \sqrt{1+x}-\sqrt{1+x}) \mathrm{d} x=\int_{0}^{3}\left((1+x)^{1 \frac{1}{2}}-(1+x)^{\frac{1}{2}}\right) \mathrm{d} x \\
& =\left[\frac{2}{5}(1+x)^{2 \frac{1}{2}}-\frac{2}{3}(1+x)^{1 \frac{1}{2}}\right]_{0}^{3}=\frac{64}{5}-\frac{16}{3}-\frac{2}{5}+\frac{2}{3}=\frac{116}{15}=7 \frac{11}{15}
\end{aligned}
$$

