
10.1 (a) For 1 < p ≤ 4, A(p) denotes the area of the region bounded by the horizontal axis, the vertical lines

x = 1 and x = p and the graph of the function g:x → 3. So the ’area function’ is given by

A(p) = 3(p− 1).

(b) For 1 < p ≤ 5, A(p) denotes the area of the region bounded by the horizontal axis, the vertical lines

x = 1 and x = p and the graph of the function h:x → x. So the ’area function’ is given by

A(p) = (p− 1)× 1 + 1

2
(p− 1)× (p− 1) = 1

2
p2 − 1

2
.

10.2 (a) The integral

∫

3

1

3 dx represents the area of the region

x

y

1 3

3

As the area of this region is 6, the given integral is equal to 6.

(b) The integral

∫

1

−2

(t+ 3) dt represents the area of the region

x

y

1−2

3

As the area of this region is 7 1

2
, the given integral is equal to 7 1

2
.

(c) The integral

∫ 1

0

√

1− x2 dx represents the area of the region

x

y

1

1

As the area of this region is 1

4
π, the given integral is equal to 1

4
π.



10.3 (a) The integral
∫

3

0

(x− 2) dx =
[

1

2
x2 − 2x

]3

0
= 4 1

2
− 6 = −1 1

2

represents the area 1

2
of the triangle above the horizontal axis minus the area 2 of the triangle below the

horizontal axis.

x

y

2 3

1

−2

(b) The integral
∫ 3

2

(t− 2) dt =
[

1

2
t2 − 2t

]3

2
= 4 1

2
− 6− 2 + 4 = 1

2

represents the area of the triangle above the horizontal axis (in the figure of part (a)).

10.6 We introduce the continuous function g on the interval [0, 1], defined by

g(t) = t2.

Then

G(x) =

∫

x

0

f(t2) dt =

∫

x

0

f
(

g(t)
)

dt =

∫

x

0

(

f ◦ g
)

(t) dt

and the Fundamental Theorem, part I implies that, for 0 < x < 1,

G′(x) =
(

f ◦ g
)

(x) = f
(

g(x)
)

= f(x2).

10.7 We introduce the differentiable functions g and h on the interval [0, 1], defined by

g(x) = x2

h(x) =

∫

x

0

f(t) dt.and

Then G(x) = h
(

g(x)
)

for all x ∈ [0, 1]. In view of the Fundamental Theorem, part I and the Chain Rule,

the function G is differentiable and for 0 < x < 1,

G′(x) = h′
(

g(x)
)

· g′(x) = f
(

g(x)
)

· 2x = f(x2) · 2x.

10.10 (a) Let ε > 0. Choose H = ln
(2

ε

)2

. Then

t > H =⇒ et > eH =
(2

ε

)2

=⇒
√
et >

2

ε
=⇒ 1√

et
<

ε

2
=⇒ 2√

et
< ε =⇒

∣

∣

∣

2√
et

− 0
∣

∣

∣
< ε.

This proves that lim
t→∞

2√
et

= 0.



(b) Let ε > 0. Note that for all x ≥ 0,

0 <
x

ex
<

2√
ex

.

So for x > H , 0 <
x

ex
<

2√
ex

< ε, which implies that
∣

∣

∣

x

ex
− 0

∣

∣

∣
< ε.

This proves that lim
x→∞

x

ex
= 0.

10.12 (a) According to the Arithmetic Rules for limits

lim
x→∞

2 + ex

1 + 3 ex
= lim

x→∞

1 + 2 e−x

3 + e−x
= 1

3
.

Note that lim
x→∞

[1 + 2 e−x] = 1 and lim
x→∞

[3 + e−x] = 3.

(b) If f(x) = e2x − ex and g(x) = x, then the functions f and g are differentiable, g′(x) = 1 6= 0 for all x and

f(0) = g(0) = 0. Furthermore, f ′(x) = 2 e2x − ex. So, in view of de l’Hôpital’s Rule (weak form),

lim
x→0

e2x − ex

x
= lim

x→0

f(x)

g(x)
=

f ′(0)

g′(0)
= 1.

11.8 (a) For b > 1
∫

b

1

x e−x dx =
[

−x e−x
]b

1
−
∫

b

1

−e−x dx = −b e−b + e−1 −
[

e−x
]b

1

= −b e−b + e−1 − e−b + e−1 =
2

e
− e−b − b e−b.

Because lim
b→∞

(2

e
− e−b − b e−b

)

=
2

e
,

∫

∞

1

x e−x dx =
2

e
.

(b) For 0 < b < 1 and with ϕ(x) = 1− x

∫ b

0

1√
1− x

dx =

∫ b

0

− 1
√

ϕ(x)
· ϕ′(x) dx =

[

−2
√

ϕ(x)
]b

0

=
[

−2
√
1− x

]b

0
= −2

√
1− b+ 2.

Because lim
b→1

(

−2
√
1− b+ 2

)

= 2,
∫

1

0

1√
1− x

dx = 2.

11.10 As, for b > 0,
∫

b

0

1

1 + x2
dx = [arctanx]

b

0
= arctan b

and lim
b→∞

arctan b = 1

2
π,

∫

∞

0

1

1 + x2
dx = 1

2
π.

Similarly,

∫

0

−∞

1

1 + x2
dx = lim

a→−∞

∫

0

a

1

1 + x2
dx = lim

a→−∞

[arctanx]0
a
= − lim

a→−∞

arctana = 1

2
π.

Hence,
∫

∞

−∞

1

1 + x2
dx =

∫ 0

−∞

1

1 + x2
dx+

∫

∞

0

1

1 + x2
dx = 1

2
π + 1

2
π = π.



11.18 Note that

∫ 3

0

x
√
1 + x dx =

∫ 3

0

(

(1 + x)
√
1 + x−

√
1 + x

)

dx =

∫ 3

0

(

(1 + x)1
1

2 − (1 + x)
1

2

)

dx

=
[

2

5
(1 + x)2

1

2 − 2

3
(1 + x)1

1

2

]3

0

= 64

5
− 16

3
− 2

5
+ 2

3
= 116

15
= 7 11

15
.


