- 1.1 (a) true: the numbers 4, 3 and 2 are elements of the set A (the order of the elements is irrelevant).
 - (b) not true: there is no $n \in \mathbb{N}$ such that 3 = 2n.
 - (c) true: since each element of A is a natural number smaller than 6, each element of the set A is contained in the set C.
 - (d) not true: the set A doesn't contain the set $\{2\}$; however, it contains the number 2.
 - (e) not true: the set C contains the number 3 which is not contained in the set B.
 - (f) true: by choosing n = 1, 2, 3, 4, respectively, one shows that the numbers 2, 4, 6 and 8 are contained in the set B.
 - (g) true: each element of the set C is contained in the set A.
 - (h) true: since $A \subset C$ and $C \subset A$, A = C.

1.2 $A \cup B = \{1, 2, 5, 7, 10, 11, 14\}$ $A \cap B = \{7\}$ $A \setminus B = \{1, 5, 10\}$ $B \setminus A = \{2, 11, 14\}$ $(A \setminus B) \cup B = \{1, 2, 5, 7, 10, 11, 14\}$ $(A \setminus B) \cup (A \cap B) = \{1, 5, 7, 10\}.$

1.4 (a) A Venn diagram of the set $S \Delta T$ is the gray area below:

(b) According to the definition,

$$S \Delta S = (S \setminus S) \cup (S \setminus S) = \phi \cup \phi = \phi$$

(c) According to the definition,

$$S \Delta \phi = (S \setminus \phi) \cup (\phi \setminus S) = S \cup \phi = S.$$

1.7 (a) If $x \in [0, b]$, then x can be written in the form $x = \frac{x}{b} \cdot b$, whereas

$$0 \le x \le b \Longrightarrow 0 \le \frac{x}{b} \le 1.$$

So we can choose $t = \frac{x}{h}$.

We obtain the midpoint of the interval [0, b] if we choose $t = \frac{1}{2}$.

(b) Note that b - a > 0. If $x \in [a, b]$, then

$$a \le x \le b \iff 0 \le x - a \le b - a \Longrightarrow x - a \in [0, b - a].$$

So, according to part (a), there exists some $t \in [0, 1]$ such that

$$x - a = t(b - a) \iff x = a + t(b - a) \iff x = (1 - t)a + tb.$$

(c) If $t \in \{0, 1\}$, then, obviously $(1 - t)a + tb \in [a, b]$. If 0 < t < 1, then

$$(1-t)a + tb < (1-t)b + tb = b$$

 $(1-t)a + tb > (1-t)a + ta = a$

and

- Hence, $(1 t)a + tb \in [a, b]$.
- (d) In a similar way, one can prove that $x \in (a, b)$ if and only if x = (1 t)a + tb for some $t \in (0, 1)$.

(c) Note that $x + y = k \iff y = k - x$, where $k \in \mathbb{Z}$. Hence, the set $\{(x, y) | x + y \text{ is an integer}\}$ consists of an infinite number of lines y = k - x, where $k \in \mathbb{Z}$.

(d) The set $(x-1)^2 + (y-2)^2 = 1$ represents a circle with center (1,2) and radius 1. The set $(x-1)^2 + (y-2)^2 < 1$:

(e) Note that $x^4 < x^2 \iff x^2(x^2 - 1) < 0 \iff -1 < x < 0$ or 0 < x < 1. The set $\{(x, y) | x^4 < y < x^2\}$ is the set of points 'between' the parabola $y = x^2$ and the parabola-like curve $y = x^4$:

(f) Since $x^2 = y^2 \iff y = \pm x$, the set $\{(x, y) | x^2 = y^2\}$ consists of the two lines y = x and y = -x:

1.25 For $x \neq -1$ and $g(x) \neq -1$,

$$(g \circ g)(x) = g(g(x)) = g\left(\frac{1-x}{1+x}\right) = \frac{1-g(x)}{1+g(x)} = \frac{1-\frac{1-x}{1+x}}{1+\frac{1-x}{1+x}} = \frac{1+x-(1-x)}{1+x+(1-x)} = \frac{2x}{2} = x.$$

As for $x \neq -1$,

$$g(x) = -1 \Longleftrightarrow \frac{1-x}{1+x} = -1 \Longleftrightarrow 1 - x = -1 - x \Longleftrightarrow 2 = 0,$$

the domain of $g \circ g$ is the set $\mathbb{R} \setminus \{-1\}$.

1.51 (a)
$$2x^4 - 32 = 2(x^4 - 16) = 2(x^2 - 4)(x^2 + 4) = 2(x - 2)(x + 2)(x^2 + 4).$$

(b) $x^2 - y^2 + 5x + 5y = (x - y)(x + y) + 5(x + y) = (x + y)(x - y + 5).$

1.52 (a) By rewriting the fractions as fractions with x^2y^2 as the common denominator, we obtain for $x \neq 0$ and $y \neq 0$,

$$\frac{2+x}{x^2y} + \frac{1-y}{xy^2} - \frac{2y}{x^2y^2} = \frac{(2+x)y}{x^2y^2} + \frac{(1-y)x}{x^2y^2} - \frac{2y}{x^2y^2} = \frac{2y+xy+x-xy-2y}{x^2y^2}$$
$$= \frac{x}{x^2y^2} = \frac{1}{xy^2}.$$

(b) By rewriting the fractions as fractions with $x^2 - y^2$ as the common denominator, we obtain for $x \neq \pm y$,

$$\frac{x-y}{x+y} - \frac{x}{x-y} + \frac{3xy}{x^2 - y^2} = \frac{(x-y)^2}{x^2 - y^2} - \frac{x(x+y)}{x^2 - y^2} + \frac{3xy}{x^2 - y^2}$$
$$= \frac{x^2 - 2xy + y^2 - x^2 - xy + 3xy}{x^2 - y^2} = \frac{y^2}{x^2 - y^2}.$$

(c) For x > 0,

$$\frac{x(\sqrt{x}+1)}{\sqrt{x}} = \sqrt{x}(\sqrt{x}+1) = x + \sqrt{x}.$$

1.53 (b) First we observe that

$$\frac{x}{2} \ge 1 + \frac{4}{x} \Longleftrightarrow \frac{x^2}{2x} - \frac{2x}{2x} - \frac{8}{2x} \ge 0 \Longleftrightarrow \frac{x^2 - 2x - 8}{2x} \ge 0 \Longleftrightarrow \frac{(x+2)(x-4)}{2x} \ge 0.$$

Next we construct a sign diagram for the expressions (x+2)(x-4), 2x and $\frac{(x+2)(x-4)}{2x}$:

So the original inequality is satisfied for $-2 \le x < 0$ and for $x \ge 4$.

(c) Since $(x-1)^{100} \ge 0$ for all x, the sign of the expressions $(x-1)^{100}(x+1)$ is determined by the factor x+1. Hence

$$(x-1)^{100}(x+1) > 0 \iff x+1 > 0$$
 and $x \neq 1 \iff -1 < x < 1$ or $x > 1$.

(d) First we solve the inequalities 3x - 1 < 5x + 3 and $5x + 3 \le 2x + 15$ separately. Since

$$3x - 1 < 5x + 3 \iff -4 < 2x \iff x > -2$$

and

$$5x + 3 \le 2x + 15 \Longleftrightarrow 3x \le 12 \Longleftrightarrow x \le 4,$$

the inequalities are satisfied if $-2 < x \leq 4$.