1.1 (a) true: the numbers 4,3 and 2 are elements of the set A (the order of the elements is irrelevant).
(b) not true: there is no $n \in \mathbb{N}$ such that $3=2 n$.
(c) true: since each element of A is a natural number smaller than 6 , each element of the set A is contained in the set C.
(d) not true: the set A doesn't contain the set $\{2\}$; however, it contains the number 2 .
(e) not true: the set C contains the number 3 which is not contained in the set B.
(f) true: by choosing $n=1,2,3,4$, respectively, one shows that the numbers $2,4,6$ and 8 are contained in the set B.
(g) true: each element of the set C is contained in the set A.
(h) true: since $A \subset C$ and $C \subset A, A=C$.
$1.2 \quad A \cup B=\{1,2,5,7,10,11,14\}$
$A \cap B=\{7\}$
$A \backslash B=\{1,5,10\}$
$B \backslash A=\{2,11,14\}$
$(A \backslash B) \cup B=\{1,2,5,7,10,11,14\}$
$(A \backslash B) \cup(A \cap B)=\{1,5,7,10\}$.
1.4 (a) A Venn diagram of the set $S \Delta T$ is the gray area below:

(b) According to the definition,

$$
S \Delta S=(S \backslash S) \cup(S \backslash S)=\phi \cup \phi=\phi
$$

(c) According to the definition,

$$
S \Delta \phi=(S \backslash \phi) \cup(\phi \backslash S)=S \cup \phi=S
$$

1.7 (a) If $x \in[0, b]$, then x can be written in the form $x=\frac{x}{b} \cdot b$, whereas

$$
0 \leq x \leq b \Longrightarrow 0 \leq \frac{x}{b} \leq 1
$$

So we can choose $t=\frac{x}{b}$.
We obtain the midpoint of the interval $[0, b]$ if we choose $t=\frac{1}{2}$.
(b) Note that $b-a>0$. If $x \in[a, b]$, then

$$
a \leq x \leq b \Longleftrightarrow 0 \leq x-a \leq b-a \Longrightarrow x-a \in[0, b-a]
$$

So, according to part (a), there exists some $t \in[0,1]$ such that

$$
x-a=t(b-a) \Longleftrightarrow x=a+t(b-a) \Longleftrightarrow x=(1-t) a+t b .
$$

(c) If $t \in\{0,1\}$, then, obviously $(1-t) a+t b \in[a, b]$.

If $0<t<1$, then
and

$$
(1-t) a+t b<(1-t) b+t b=b
$$

$$
(1-t) a+t b>(1-t) a+t a=a
$$

Hence, $(1-t) a+t b \in[a, b]$.
(d) In a similar way, one can prove that $x \in(a, b)$ if and only if $x=(1-t) a+t b$ for some $t \in(0,1)$.
1.8 (a) The set $\{(x, y) \mid x>y\}$:

(b) The set $\left\{(x, y) \mid y<x^{2}\right\}$:

(c) Note that $x+y=k \Longleftrightarrow y=k-x$, where $k \in \mathbf{Z}$. Hence, the set $\{(x, y) \mid x+y$ is an integer $\}$ consists of an infinite number of lines $y=k-x$, where $k \in \mathbf{Z}$.

(d) The set $(x-1)^{2}+(y-2)^{2}=1$ represents a circle with center $(1,2)$ and radius 1 .

The set $(x-1)^{2}+(y-2)^{2}<1$:

(e) Note that $x^{4}<x^{2} \Longleftrightarrow x^{2}\left(x^{2}-1\right)<0 \Longleftrightarrow-1<x<0$ or $0<x<1$. The set $\left\{(x, y) \mid x^{4}<y<x^{2}\right\}$ is the set of points 'between' the parabola $y=x^{2}$ and the parabola-like curve $y=x^{4}$:

(f) Since $x^{2}=y^{2} \Longleftrightarrow y= \pm x$, the set $\left\{(x, y) \mid x^{2}=y^{2}\right\}$ consists of the two lines $y=x$ and $y=-x$:

1.25 For $x \neq-1$ and $g(x) \neq-1$,

$$
(g \circ g)(x)=g(g(x))=g\left(\frac{1-x}{1+x}\right)=\frac{1-g(x)}{1+g(x)}=\frac{1-\frac{1-x}{1+x}}{1+\frac{1-x}{1+x}}=\frac{1+x-(1-x)}{1+x+(1-x)}=\frac{2 x}{2}=x
$$

As for $x \neq-1$,

$$
g(x)=-1 \Longleftrightarrow \frac{1-x}{1+x}=-1 \Longleftrightarrow 1-x=-1-x \Longleftrightarrow 2=0
$$

the domain of $g \circ g$ is the set $\mathbb{R} \backslash\{-1\}$.
1.51 (a) $2 x^{4}-32=2\left(x^{4}-16\right)=2\left(x^{2}-4\right)\left(x^{2}+4\right)=2(x-2)(x+2)\left(x^{2}+4\right)$.
(b) $x^{2}-y^{2}+5 x+5 y=(x-y)(x+y)+5(x+y)=(x+y)(x-y+5)$.
1.52 (a) By rewriting the fractions as fractions with $x^{2} y^{2}$ as the common denominator, we obtain for $x \neq 0$ and $y \neq 0$,

$$
\begin{aligned}
\frac{2+x}{x^{2} y}+\frac{1-y}{x y^{2}}-\frac{2 y}{x^{2} y^{2}} & =\frac{(2+x) y}{x^{2} y^{2}}+\frac{(1-y) x}{x^{2} y^{2}}-\frac{2 y}{x^{2} y^{2}}=\frac{2 y+x y+x-x y-2 y}{x^{2} y^{2}} \\
& =\frac{x}{x^{2} y^{2}}=\frac{1}{x y^{2}} .
\end{aligned}
$$

(b) By rewriting the fractions as fractions with $x^{2}-y^{2}$ as the common denominator, we obtain for $x \neq \pm y$,

$$
\begin{aligned}
\frac{x-y}{x+y}-\frac{x}{x-y}+\frac{3 x y}{x^{2}-y^{2}} & =\frac{(x-y)^{2}}{x^{2}-y^{2}}-\frac{x(x+y)}{x^{2}-y^{2}}+\frac{3 x y}{x^{2}-y^{2}} \\
& =\frac{x^{2}-2 x y+y^{2}-x^{2}-x y+3 x y}{x^{2}-y^{2}}=\frac{y^{2}}{x^{2}-y^{2}} .
\end{aligned}
$$

(c) For $x>0$,

$$
\frac{x(\sqrt{x}+1)}{\sqrt{x}}=\sqrt{x}(\sqrt{x}+1)=x+\sqrt{x}
$$

1.53 (b) First we observe that

$$
\frac{x}{2} \geq 1+\frac{4}{x} \Longleftrightarrow \frac{x^{2}}{2 x}-\frac{2 x}{2 x}-\frac{8}{2 x} \geq 0 \Longleftrightarrow \frac{x^{2}-2 x-8}{2 x} \geq 0 \Longleftrightarrow \frac{(x+2)(x-4)}{2 x} \geq 0
$$

Next we construct a sign diagram for the expressions $(x+2)(x-4), 2 x$ and $\frac{(x+2)(x-4)}{2 x}$:

So the original inequality is satisfied for $-2 \leq x<0$ and for $x \geq 4$.
(c) Since $(x-1)^{100} \geq 0$ for all x, the sign of the expressions $(x-1)^{100}(x+1)$ is determined by the factor $x+1$. Hence

$$
(x-1)^{100}(x+1)>0 \Longleftrightarrow x+1>0 \text { and } x \neq 1 \Longleftrightarrow-1<x<1 \text { or } x>1
$$

(d) First we solve the inequalities $3 x-1<5 x+3$ and $5 x+3 \leq 2 x+15$ separately. Since

$$
3 x-1<5 x+3 \Longleftrightarrow-4<2 x \Longleftrightarrow x>-2
$$

and

$$
5 x+3 \leq 2 x+15 \Longleftrightarrow 3 x \leq 12 \Longleftrightarrow x \leq 4
$$

the inequalities are satisfied if $-2<x \leq 4$.

