1.3 We have to show that (a) $(A \backslash B) \cup(A \cap B) \subset A$ and that (b) $A \subset(A \backslash B) \cup(A \cap B)$.
(a) Let $x \in(A \backslash B) \cup(A \cap B)$. Then $x \in A \backslash B$ or $x \in A \cap B$. If $x \in A \backslash B$, then $x \in A$ and if $x \in A \cap B$, then $x \in A$ too. So $x \in A$.
(b) Let $x \in A$. We distinguish two cases: $x \in B$ and $x \notin B$.

If $x \in B$, then $x \in A \cap B$. If $x \notin B$, then $x \in A \backslash B$. Hence, x is contained in $A \cap B$ or x is contained in $A \backslash B$, i.e. $x \in(A \backslash B) \cup(A \cap B)$.
1.8 (g) Note that

$$
4 x^{2}+9 y^{2}=36 \Longleftrightarrow \frac{x^{2}}{9}+\frac{y^{2}}{4}=1
$$

represents an ellipse which passes through the four points $(3,0),(-3,0),(0,2)$ and $(0,-2)$. This ellipse is a circle that has been squashed by scaling it by different amounts in the two coordinate directions. The set $4 x^{2}+9 y^{2}<36$ represents the area enclosed by this ellipse:

(h) Note that

$$
x^{2}-y^{2}=4 \Longleftrightarrow y^{2}=x^{2}-4
$$

Hence, $x^{2}-4 \geq 0 \Longrightarrow x \leq-2$ or $x \geq 2$. For these values of x,

$$
y^{2}=x^{2}-4 \Longleftrightarrow y= \pm \sqrt{x^{2}-4}
$$

So the curve is in two parts called branches (one part for $x \geq 2$ and one part for $x \leq-2$). As for large values of x,

$$
\pm \sqrt{x^{2}-4}= \pm x \sqrt{1-\frac{4}{x^{2}}} \approx \pm x
$$

the branches are (for large values of x) close to the straight lines $y=x$ and $y=-x$. These lines, which intersect at right angles, are called asymptotes. The same holds if $-x$ is large.

The curve is called a (rectangular) hyperbola that has center at the origin and that passes through the points $(2,0)$ and $(-2,0)$. The adjective rectangular refers to the fact that the two asymptotes intersect at right angles.

1.26 (a) For $x \neq 1$ and $g(x) \neq 0$,

$$
(f \circ g)(x)=f(g(x))=f\left(\frac{x}{1-x}\right)=\frac{2}{\frac{x}{1-x}}=\frac{2-2 x}{x}=\frac{2}{x}-2 .
$$

As $g(x)=0 \Longleftrightarrow x=0$, the domain of $f \circ g$ is $\mathbb{R} \backslash\{0,1\}$.
For $x \neq 0$ and $f(x) \neq 1$,

$$
(g \circ f)(x)=g(f(x))=g\left(\frac{2}{x}\right)=\frac{\frac{2}{x}}{1-\frac{2}{x}}=\frac{2}{x-2}
$$

As $f(x)=1 \Longleftrightarrow x=2$, the domain of $g \circ f$ is $\mathbb{R} \backslash\{0,2\}$.
For $x \neq 0$ and $f(x) \neq 0$,

$$
(f \circ f)(x)=f(f(x))=f\left(\frac{2}{x}\right)=\frac{2}{\frac{2}{x}}=x
$$

As $f(x) \neq 0$ for all $x \neq 0$, the domain of $f \circ f$ is $\mathbb{R} \backslash\{0\}$.
For $x \neq 1$ and $g(x) \neq 1$,

$$
(g \circ g)(x)=g(g(x))=g\left(\frac{x}{1-x}\right)=\frac{\frac{x}{1-x}}{1-\frac{x}{1-x}}=\frac{x}{1-2 x}
$$

As $g(x)=1 \Longleftrightarrow x=\frac{1}{2}$, the domain of $g \circ g$ is $\mathbb{R} \backslash\left\{1, \frac{1}{2}\right\}$.
1.27 (a) $(f \circ g)(x)=f(g(x))=g(x)^{2}=(x+1)^{2}$.
(b) As $x=(f \circ g)(x)=f(x+4)$, it follows that $f(x)=x-4$.
(c) As $|x|=(f \circ g)(x)=f(g(x))=\sqrt{g(x)}$, it follows that $g(x)=x^{2}$.
(d) As $2 x+3=(f \circ g)(x)=f(g(x))=f(\sqrt[3]{x})$, it follows that $f(x)=2 x^{3}+3$.
(e) As

$$
x=(f \circ g)(x)=f(g(x))=\frac{g(x)+1}{g(x)},
$$

provided that $g(x) \neq 0$, it follows that

$$
g(x) x=g(x)+1 \Longrightarrow g(x)(x-1)=1 \Longrightarrow g(x)=\frac{1}{x-1},
$$

provided that $x \neq 1$.
(f) As $\frac{1}{x^{2}}=(f \circ g)(x)=f(g(x))=f(x-1)$, it follows that

$$
f(x)=f((x+1)-1)=\frac{1}{(x+1)^{2}}
$$

provided that $x \neq-1$.
1.49 Let h and g be the functions defined by $h(x)=x^{2}$ and $g(x)=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{x+1} \quad(x \neq-1)$, respectively. Then for all x,

$$
(g \circ h)(x)=g(h(x))=\frac{\mathrm{e}^{h(x)}+\mathrm{e}^{-h(x)}}{h(x)+1}=\frac{\mathrm{e}^{x^{2}}+\mathrm{e}^{-x^{2}}}{x^{2}+1}=f(x) .
$$

So $f=g \circ h$.
1.51 (c) $x^{3} y-4 x^{2} y^{2}+4 x y^{3}=x y\left(x^{2}-4 x y+4 y^{2}\right)=x y(x-2 y)^{2}$.
(d) $x^{2}+2 x y-3 y^{2}=(x+3 y)(x-y)$.
(e) For this exercise some inventiveness is needed: first rearrange the terms of the sum.

$$
x^{3}+y^{3}+x y^{2}+x^{2} y=x^{3}+x^{2} y+y^{3}+x y^{2}=x^{2}(x+y)+y^{2}(y+x)=(x+y)\left(x^{2}+y^{2}\right) .
$$

1.52 (d) Using the fact that all the terms in the fraction have the factor $\sqrt{x} \sqrt{y}$ in common, we obtain

$$
\frac{x \sqrt{y}-y \sqrt{x}}{x \sqrt{y}+y \sqrt{x}}=\frac{\sqrt{x} \sqrt{y}[\sqrt{x}-\sqrt{y}]}{\sqrt{x} \sqrt{y}[\sqrt{x}+\sqrt{y}]}=\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}
$$

By multiplying the numerator and denominator by $x \sqrt{y}-y \sqrt{x}$ we obtain

$$
\begin{aligned}
\frac{x \sqrt{y}-y \sqrt{x}}{x \sqrt{y}+y \sqrt{x}} & =\frac{[x \sqrt{y}-y \sqrt{x}]^{2}}{[x \sqrt{y}+y \sqrt{x}][x \sqrt{y}-y \sqrt{x}]}=\frac{x^{2} y-2 x y \sqrt{x y}+y^{2} x}{[x \sqrt{y}]^{2}-[y \sqrt{x}]^{2}}=\frac{x^{2} y-2 x y \sqrt{x y}+y^{2} x}{x^{2} y-y^{2} x} \\
& =\frac{x y[x-2 \sqrt{x y}+y]}{x y[x-y]}=\frac{[\sqrt{x}-\sqrt{y}]^{2}}{x-y}=\frac{[\sqrt{x}-\sqrt{y}]^{2}}{[\sqrt{x}-\sqrt{y}][\sqrt{x}+\sqrt{y}]}=\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}} .
\end{aligned}
$$

1.53 (a) First we solve the corresponding equality.

$$
\begin{aligned}
x^{4}-5 x^{2}+5=1 & \Longleftrightarrow x^{4}-5 x^{2}+4=0 \Longleftrightarrow\left(x^{2}-4\right)\left(x^{2}-1\right)=0 \\
& \Longleftrightarrow(x-2)(x+2)(x-1)(x+1)=0 \Longleftrightarrow x= \pm 1 \text { or } x= \pm 2
\end{aligned}
$$

Next we construct a sign diagram for the expression $x^{4}-5 x^{2}+4$:

So the inequality is satisfied for $x \leq-2$ or $-1 \leq x \leq 1$ or $x \geq 2$.

