- 1.3 We have to show that (a) $(A \setminus B) \cup (A \cap B) \subset A$ and that (b) $A \subset (A \setminus B) \cup (A \cap B)$.
 - (a) Let $x \in (A \setminus B) \cup (A \cap B)$. Then $x \in A \setminus B$ or $x \in A \cap B$. If $x \in A \setminus B$, then $x \in A$ and if $x \in A \cap B$, then $x \in A$ too. So $x \in A$.
 - (b) Let x ∈ A. We distinguish two cases: x ∈ B and x ∉ B.
 If x ∈ B, then x ∈ A ∩ B. If x ∉ B, then x ∈ A \ B. Hence, x is contained in A ∩ B or x is contained in A \ B, i.e. x ∈ (A \ B) ∪ (A ∩ B).
- 1.8 (g) Note that

$$4x^2 + 9y^2 = 36 \iff \frac{x^2}{9} + \frac{y^2}{4} = 1$$

represents an *ellipse* which passes through the four points (3,0), (-3,0), (0,2) and (0,-2). This ellipse is a circle that has been squashed by scaling it by different amounts in the two coordinate directions. The set $4x^2 + 9y^2 < 36$ represents the area enclosed by this ellipse:

(h) Note that

$$x^2 - y^2 = 4 \Longleftrightarrow y^2 = x^2 - 4.$$

Hence, $x^2 - 4 \ge 0 \Longrightarrow x \le -2$ or $x \ge 2$. For these values of x,

$$y^2 = x^2 - 4 \Longleftrightarrow y = \pm \sqrt{x^2 - 4}.$$

So the curve is in two parts called *branches* (one part for $x \ge 2$ and one part for $x \le -2$). As for large values of x,

$$\pm\sqrt{x^2-4} = \pm x\sqrt{1-\frac{4}{x^2}} \approx \pm x,$$

the branches are (for large values of x) close to the straight lines y = x and y = -x. These lines, which intersect at right angles, are called *asymptotes*. The same holds if -x is large.

The curve is called a (*rectangular*) hyperbola that has center at the origin and that passes through the points (2,0) and (-2,0). The adjective rectangular refers to the fact that the two asymptotes intersect at right angles.

1.26 (a) For $x \neq 1$ and $g(x) \neq 0$,

$$(f \circ g)(x) = f(g(x)) = f(\frac{x}{1-x}) = \frac{2}{\frac{x}{1-x}} = \frac{2-2x}{x} = \frac{2}{x} - 2.$$

As $g(x) = 0 \iff x = 0$, the domain of $f \circ g$ is $\mathbb{R} \setminus \{0, 1\}$. For $x \neq 0$ and $f(x) \neq 1$,

$$(g \circ f)(x) = g(f(x)) = g\left(\frac{2}{x}\right) = \frac{\frac{2}{x}}{1 - \frac{2}{x}} = \frac{2}{x - 2}$$

As $f(x) = 1 \iff x = 2$, the domain of $g \circ f$ is $\mathbb{R} \setminus \{0, 2\}$. For $x \neq 0$ and $f(x) \neq 0$,

$$(f \circ f)(x) = f(f(x)) = f(\frac{2}{x}) = \frac{2}{\frac{2}{x}} = x.$$

As $f(x) \neq 0$ for all $x \neq 0$, the domain of $f \circ f$ is $\mathbb{R} \setminus \{0\}$. For $x \neq 1$ and $g(x) \neq 1$,

$$(g \circ g)(x) = g(g(x)) = g\left(\frac{x}{1-x}\right) = \frac{\frac{x}{1-x}}{1-\frac{x}{1-x}} = \frac{x}{1-2x}$$

As $g(x) = 1 \iff x = \frac{1}{2}$, the domain of $g \circ g$ is $\mathbb{R} \setminus \{1, \frac{1}{2}\}$.

1.27 (a) $(f \circ g)(x) = f(g(x)) = g(x)^2 = (x+1)^2.$

- (b) As $x = (f \circ g)(x) = f(x+4)$, it follows that f(x) = x 4.
- (c) As $|x| = (f \circ g)(x) = f(g(x)) = \sqrt{g(x)}$, it follows that $g(x) = x^2$.
- (d) As $2x + 3 = (f \circ g)(x) = f(g(x)) = f(\sqrt[3]{x})$, it follows that $f(x) = 2x^3 + 3$.

(e) As

$$x = (f \circ g)(x) = f(g(x)) = \frac{g(x) + 1}{g(x)}$$

provided that $g(x) \neq 0$, it follows that

$$g(x)x = g(x) + 1 \Longrightarrow g(x)(x-1) = 1 \Longrightarrow g(x) = \frac{1}{x-1},$$

provided that $x \neq 1$.

(f) As $\frac{1}{x^2} = (f \circ g)(x) = f(g(x)) = f(x-1)$, it follows that

$$f(x) = f((x+1) - 1) = \frac{1}{(x+1)^2},$$

provided that $x \neq -1$.

1.49 Let h and g be the functions defined by $h(x) = x^2$ and $g(x) = \frac{e^x + e^{-x}}{x+1}$ $(x \neq -1)$, respectively. Then for all x,

$$(g \circ h)(x) = g(h(x)) = \frac{e^{h(x)} + e^{-h(x)}}{h(x) + 1} = \frac{e^{x^2} + e^{-x^2}}{x^2 + 1} = f(x)$$

So $f = g \circ h$.

- 1.51 (c) $x^3y 4x^2y^2 + 4xy^3 = xy(x^2 4xy + 4y^2) = xy(x 2y)^2.$ (d) $x^2 + 2xy - 3y^2 = (x + 3y)(x - y).$
 - (e) For this exercise some inventiveness is needed: first rearrange the terms of the sum.

$$x^{3} + y^{3} + xy^{2} + x^{2}y = x^{3} + x^{2}y + y^{3} + xy^{2} = x^{2}(x+y) + y^{2}(y+x) = (x+y)(x^{2}+y^{2}).$$

1.52 (d) Using the fact that all the terms in the fraction have the factor $\sqrt{x}\sqrt{y}$ in common, we obtain

$$\frac{x\sqrt{y} - y\sqrt{x}}{x\sqrt{y} + y\sqrt{x}} = \frac{\sqrt{x}\sqrt{y}\left[\sqrt{x} - \sqrt{y}\right]}{\sqrt{x}\sqrt{y}\left[\sqrt{x} + \sqrt{y}\right]} = \frac{\sqrt{x} - \sqrt{y}}{\sqrt{x} + \sqrt{y}}.$$

By multiplying the numerator and denominator by $x\sqrt{y} - y\sqrt{x}$ we obtain

$$\frac{x\sqrt{y} - y\sqrt{x}}{x\sqrt{y} + y\sqrt{x}} = \frac{\left[x\sqrt{y} - y\sqrt{x}\right]^2}{\left[x\sqrt{y} + y\sqrt{x}\right]\left[x\sqrt{y} - y\sqrt{x}\right]} = \frac{x^2y - 2xy\sqrt{xy} + y^2x}{\left[x\sqrt{y}\right]^2 - \left[y\sqrt{x}\right]^2} = \frac{x^2y - 2xy\sqrt{xy} + y^2x}{x^2y - y^2x}$$
$$= \frac{xy\left[x - 2\sqrt{xy} + y\right]}{xy\left[x - y\right]} = \frac{\left[\sqrt{x} - \sqrt{y}\right]^2}{x - y} = \frac{\left[\sqrt{x} - \sqrt{y}\right]^2}{\left[\sqrt{x} - \sqrt{y}\right]\left[\sqrt{x} + \sqrt{y}\right]} = \frac{\sqrt{x} - \sqrt{y}}{\sqrt{x} + \sqrt{y}}.$$

1.53 (a) First we solve the corresponding equality.

$$x^{4} - 5x^{2} + 5 = 1 \iff x^{4} - 5x^{2} + 4 = 0 \iff (x^{2} - 4)(x^{2} - 1) = 0$$
$$\iff (x - 2)(x + 2)(x - 1)(x + 1) = 0 \iff x = \pm 1 \text{ or } x = \pm 2.$$

Next we construct a sign diagram for the expression $x^4 - 5x^2 + 4$:

So the inequality is satisfied for $x \leq -2$ or $-1 \leq x \leq 1$ or $x \geq 2$.