
1.13 (a) The result can be formulated as follows. If y is in the interval (x, z), then the distance between x and z

is equal to the distance between x and y plus the distance between y and z.

yx z

︷ ︸︸ ︷
|x− y|

︷ ︸︸ ︷
|y − z|

︸ ︷︷ ︸

|x− z|

If x < y < z, then

|x− y|+ |y − z| = y − x + z − y = z − x = |x− z|.

(b) The result can be formulated as follows. If y is outside the interval (x, z), then the distance between x

and z is smaller than the distance between x and y plus the distance between y and z.

yx z

︷ ︸︸ ︷
|x− y|

︸ ︷︷ ︸

|y − z|
︸ ︷︷ ︸

|x− z|

Observe that x < z < y implies that x < y. Hence,

|x− y|+ |y − z| = y − x + y − z = 2y − x− z

|x− z| = z − x.

After these preparations we give a proof by contradiction. If |x− y|+ |y − z| = |x− z|, then

2y − x− z = z − x =⇒ y = z

This however contradicts the fact that y > z.

Alternative:

As z is between x and y, part (a) implies that

|x− z|+ |z − y| = |x− y|.

So

|x− y|+ |y − z| = |x− z|+ 2|z − y| > |x− z|.

Note that |z − y| > 0, because z 6= y.

1.15 (a) Let a ≥ 0 and b ≥ 0.

We distinguish two cases: a = b = 0 and a 6= 0 or b 6= 0.

In the first case the equivalence is obviously true.

In the second case a + b > 0 so that

a = b⇐⇒ a− b = 0⇐⇒ (a− b)(a + b
︸ ︷︷ ︸

>0

) = 0⇐⇒ a2 − b2 = 0⇐⇒ a2 = b2.

(b) Using part (a) and the property |x|2 = x2, we obtain

|x− 3| = 2|x| ⇐⇒ (x− 3)2 = 4x2 ⇐⇒ x2 − 6x + 9 = 4x2 ⇐⇒ 3x2 + 6x− 9 = 0

⇐⇒ x2 + 2x− 3 = 0⇐⇒ (x− 1)(x + 3) = 0.

So the solutions are x = −3 and x = 1.



(c) Using part (a) leads to

|x + y| = |x|+ |y| ⇐⇒ (x + y)2 = (|x|+ |y|)2 ⇐⇒ x2 + y2 + 2xy = x2 + y2 + 2|x||y| ⇐⇒ xy = |xy|

⇐⇒ xy ≥ 0.

1.17 Let x be a real number between −1 and 1. Since the inequalities hold for x = 0, we may assume that

x 6= 0. Hence |x| > 0.

(a) According to Theorem 2 (c), |x| < 1. Hence, Theorem 2 (b) and the fact that |x| > 0 imply

x2 = |x2| = |x| · |x| < |x|.

Here the last inequality is obtained by multiplying both sides of the inequality |x| < 1 by |x| > 0.

(b) Theorem 2 (b) and the fact that x2 < 1 imply

∣
∣x3

∣
∣ =

∣
∣x2 · x

∣
∣ = |x2| · |x| = x2|x| < |x|.

Here the last inequality is obtained by multiplying both sides of the inequality x2 < 1 by |x| > 0.

Alternative

By using part (a) twice, one obtains

∣
∣x3

∣
∣ =

∣
∣x2 · x

∣
∣ = |x2| · |x| = x2|x| < |x||x| = x2 < |x|.

1.18 The result can be formulated as follows. The distance between two points in the interval (a, b) is

smaller than the length of this interval:

x ya b

︷ ︸︸ ︷
|x− y|

︸ ︷︷ ︸

b− a

Note that, according to Theorem 2,

|x− y| < b− a⇐⇒ a− b < x− y < b− a.

The inequality a− b < x− y can be proved as follows:

x > a

y < b =⇒ −y > −b

x− y > a− b
+

The inequality x− y < b− a can be proved as follows:

x < b

y > a =⇒ −y < −a

x− y < b− a
+

1.22 Let −1 < x < 1. According to the Triangle Inequality,

|x2(1 + 2x)| = |x2 + 2x3| ≤ |x2|+ |2x3| = x2 + 2|x3|.

In view of Exercise 17, x2 ≤ |x| and |x3| ≤ |x|.

As a consequence |x2(1 + 2x)| ≤ x2 + 2|x3| ≤ 3|x|. So we may choose b = 3.



1.24 (e) We distinguish two cases: x ∈ (−1, 1) and x /∈ (−1, 1).

If x ∈ (−1, 1),

|x2 − 1| ≤ 2x− 2⇐⇒ 1− x2 ≤ 2x− 2⇐⇒ x2 + 2x− 3 ≥ 0

⇐⇒ (x + 3)(x− 1) ≥ 0⇐⇒ x < −3 or x > 1.

So the inequality doesn’t hold for any x ∈ (−1, 1).

If x /∈ (−1, 1),

|x2 − 1| ≤ 2x− 2⇐⇒ x2 − 1 ≤ 2x− 2⇐⇒ x2 − 2x + 1 ≤ 0⇐⇒ (x− 1)2 ≤ 0⇐⇒ x = 1.

So the inequality holds for x = 1.

Alternative

As 2x− 2 ≥ |x2 − 1| ≥ 0, it follows that x ≥ 1. In that case, x2 − 1 ≥ 0, so that |x2 − 1| = x2 − 1.

As a consequence,

|x2 − 1| ≤ 2x− 2⇐⇒ x2 − 1 ≤ 2x− 2⇐⇒ x2 − 2x + 1 ≤ 0⇐⇒ (x− 1)2 ≤ 0⇐⇒ x = 1.

(f) Observe that

|x− 1| · |x + 2| ≥ 4⇐⇒ |(x− 1)(x + 2)| ≥ 4.

We distinguish two cases: x ∈ (−2, 1) and x /∈ (−2, 1).

If x ∈ (−2, 1),

|(x− 1)(x + 2)| ≥ 4⇐⇒ −(x− 1)(x + 2) ≥ 4⇐⇒ x2 + x+ 2 ≤ 0.

So the inequality doesn’t hold for any x ∈ (−2, 1).

If x /∈ (−2, 1),

|(x− 1)(x + 2)| ≥ 4⇐⇒ (x− 1)(x + 2) ≥ 4⇐⇒ x2 + x− 6 ≥ 0⇐⇒ (x + 3)(x− 2) ≥ 0.

So the inequality holds for all x /∈ (−3, 2).

Hence, the solution set for the original inequality is (−∞,−3] ∪ [2,∞).

1.29 (a) Such an equation is

y − 1 = 2(x− 3)⇐⇒ y = 2x− 5.

(b) An equation of a (non-vertical) line through the point (1, 1) is

y − 1 = m(x− 1),

where m is some real number. This line contains the point (2, 3) if and only if

3− 1 = m(2− 1)⇐⇒ m = 2.

So we obtain the equation y = 2(x− 1) + 1 or y = 2x− 1.



(c) If x1 = x2, we obtain the equation x = x1 (which represent a vertical line).

If x1 6= x2, the line through the two points is non-vertical. An equation of a (non-vertical) line

through the point (x1, y1) is

y − y1 = m(x− x1),

where m is some real number. This line contains the point (x2, y2) if and only if

y2 − y1 = m(x2 − x1)⇐⇒ m =
y2 − y1

x2 − x1

.

So we obtain the equation

y − y1 =
y2 − y1

x2 − x1

(x− x1).

(d) The slope of a line perpendicular to a line with slope m = 2, is m = − 1

2
. So we get the equation

y = − 1

2
x.

1.38 Observe that
ax

4(x + 1)

/ax2 + 4ax

x2 − 1
=

ax

4(x + 1)

/ ax(x + 4)

(x− 1)(x + 1)

this expression is not defined for x = −4, x = −1, x = 0 and x = 1.

Further, for x /∈ {−4,−1, 0, 1},

ax

4(x + 1)

/ax2 + 4ax

x2 − 1
=

ax

4(x + 1)

/ ax(x + 4)

(x− 1)(x + 1)
=

ax

4(x + 1)
·
(x− 1)(x + 1)

ax(x + 4)
=

x− 1

4(x + 4)
.

1.40 We have

2log 3 +4 log 3 =2 log 3 +
2log 3
2log 4

=2 log 3 +
2log 3

2
= 1 1

2

2
log 3.


