1.13 (a) The result can be formulated as follows. If y is in the interval (x, z), then the distance between x and z is equal to the distance between x and y plus the distance between y and z.

If $x<y<z$, then

$$
|x-y|+|y-z|=y-x+z-y=z-x=|x-z|
$$

(b) The result can be formulated as follows. If y is outside the interval (x, z), then the distance between x and z is smaller than the distance between x and y plus the distance between y and z.

Observe that $x<z<y$ implies that $x<y$. Hence,

$$
\begin{aligned}
& |x-y|+|y-z|=y-x+y-z=2 y-x-z \\
& |x-z|=z-x
\end{aligned}
$$

After these preparations we give a proof by contradiction. If $|x-y|+|y-z|=|x-z|$, then

$$
2 y-x-z=z-x \Longrightarrow y=z
$$

This however contradicts the fact that $y>z$.

Alternative:

As z is between x and y, part (a) implies that

$$
|x-z|+|z-y|=|x-y|
$$

So

$$
|x-y|+|y-z|=|x-z|+2|z-y|>|x-z| .
$$

Note that $|z-y|>0$, because $z \neq y$.
1.15 (a) Let $a \geq 0$ and $b \geq 0$.

We distinguish two cases: $a=b=0$ and $a \neq 0$ or $b \neq 0$.
In the first case the equivalence is obviously true.
In the second case $a+b>0$ so that

$$
a=b \Longleftrightarrow a-b=0 \Longleftrightarrow(a-b)(\underbrace{a+b}_{>0})=0 \Longleftrightarrow a^{2}-b^{2}=0 \Longleftrightarrow a^{2}=b^{2} .
$$

(b) Using part (a) and the property $|x|^{2}=x^{2}$, we obtain

$$
\begin{aligned}
|x-3|=2|x| & \Longleftrightarrow(x-3)^{2}=4 x^{2} \Longleftrightarrow x^{2}-6 x+9=4 x^{2} \Longleftrightarrow 3 x^{2}+6 x-9=0 \\
& \Longleftrightarrow x^{2}+2 x-3=0 \Longleftrightarrow(x-1)(x+3)=0 .
\end{aligned}
$$

So the solutions are $x=-3$ and $x=1$.
(c) Using part (a) leads to

$$
\begin{aligned}
|x+y|=|x|+|y| & \Longleftrightarrow(x+y)^{2}=(|x|+|y|)^{2} \Longleftrightarrow x^{2}+y^{2}+2 x y=x^{2}+y^{2}+2|x||y| \Longleftrightarrow x y=|x y| \\
& \Longleftrightarrow x y \geq 0 .
\end{aligned}
$$

1.17 Let x be a real number between -1 and 1 . Since the inequalities hold for $x=0$, we may assume that $x \neq 0$. Hence $|x|>0$.
(a) According to Theorem 2 (c), $|x|<1$. Hence, Theorem 2 (b) and the fact that $|x|>0$ imply

$$
x^{2}=\left|x^{2}\right|=|x| \cdot|x|<|x| .
$$

Here the last inequality is obtained by multiplying both sides of the inequality $|x|<1$ by $|x|>0$.
(b) Theorem 2 (b) and the fact that $x^{2}<1$ imply

$$
\left|x^{3}\right|=\left|x^{2} \cdot x\right|=\left|x^{2}\right| \cdot|x|=x^{2}|x|<|x| .
$$

Here the last inequality is obtained by multiplying both sides of the inequality $x^{2}<1$ by $|x|>0$.

Alternative

By using part (a) twice, one obtains

$$
\left|x^{3}\right|=\left|x^{2} \cdot x\right|=\left|x^{2}\right| \cdot|x|=x^{2}|x|<|x||x|=x^{2}<|x| .
$$

1.18 The result can be formulated as follows. The distance between two points in the interval (a, b) is smaller than the length of this interval:

Note that, according to Theorem 2,

$$
|x-y|<b-a \Longleftrightarrow a-b<x-y<b-a .
$$

The inequality $a-b<x-y$ can be proved as follows:

$$
y<b \Longrightarrow \frac{-y>-b}{x-y>a-b}+
$$

The inequality $x-y<b-a$ can be proved as follows:

$$
y>a \Longrightarrow \begin{gathered}
x<b \\
\frac{-y<-a}{x-y<b-a}+ \\
\hline
\end{gathered}
$$

1.22 Let $-1<x<1$. According to the Triangle Inequality,

$$
\left|x^{2}(1+2 x)\right|=\left|x^{2}+2 x^{3}\right| \leq\left|x^{2}\right|+\left|2 x^{3}\right|=x^{2}+2\left|x^{3}\right| .
$$

In view of Exercise 17, $x^{2} \leq|x|$ and $\left|x^{3}\right| \leq|x|$.
As a consequence $\left|x^{2}(1+2 x)\right| \leq x^{2}+2\left|x^{3}\right| \leq 3|x|$. So we may choose $b=3$.
1.24 (e) We distinguish two cases: $x \in(-1,1)$ and $x \notin(-1,1)$.

If $x \in(-1,1)$,

$$
\begin{aligned}
\left|x^{2}-1\right| \leq 2 x-2 & \Longleftrightarrow 1-x^{2} \leq 2 x-2 \Longleftrightarrow x^{2}+2 x-3 \geq 0 \\
& \Longleftrightarrow(x+3)(x-1) \geq 0 \Longleftrightarrow x<-3 \text { or } x>1
\end{aligned}
$$

So the inequality doesn't hold for any $x \in(-1,1)$.
If $x \notin(-1,1)$,

$$
\left|x^{2}-1\right| \leq 2 x-2 \Longleftrightarrow x^{2}-1 \leq 2 x-2 \Longleftrightarrow x^{2}-2 x+1 \leq 0 \Longleftrightarrow(x-1)^{2} \leq 0 \Longleftrightarrow x=1
$$

So the inequality holds for $x=1$.

Alternative

As $2 x-2 \geq\left|x^{2}-1\right| \geq 0$, it follows that $x \geq 1$. In that case, $x^{2}-1 \geq 0$, so that $\left|x^{2}-1\right|=x^{2}-1$. As a consequence,

$$
\left|x^{2}-1\right| \leq 2 x-2 \Longleftrightarrow x^{2}-1 \leq 2 x-2 \Longleftrightarrow x^{2}-2 x+1 \leq 0 \Longleftrightarrow(x-1)^{2} \leq 0 \Longleftrightarrow x=1
$$

(f) Observe that

$$
|x-1| \cdot|x+2| \geq 4 \Longleftrightarrow|(x-1)(x+2)| \geq 4
$$

We distinguish two cases: $x \in(-2,1)$ and $x \notin(-2,1)$.
If $x \in(-2,1)$,

$$
|(x-1)(x+2)| \geq 4 \Longleftrightarrow-(x-1)(x+2) \geq 4 \Longleftrightarrow x^{2}+x+2 \leq 0
$$

So the inequality doesn't hold for any $x \in(-2,1)$.
If $x \notin(-2,1)$,

$$
|(x-1)(x+2)| \geq 4 \Longleftrightarrow(x-1)(x+2) \geq 4 \Longleftrightarrow x^{2}+x-6 \geq 0 \Longleftrightarrow(x+3)(x-2) \geq 0
$$

So the inequality holds for all $x \notin(-3,2)$.
Hence, the solution set for the original inequality is $(-\infty,-3] \cup[2, \infty)$.
1.29 (a) Such an equation is

$$
y-1=2(x-3) \Longleftrightarrow y=2 x-5
$$

(b) An equation of a (non-vertical) line through the point $(1,1)$ is

$$
y-1=m(x-1)
$$

where m is some real number. This line contains the point $(2,3)$ if and only if

$$
3-1=m(2-1) \Longleftrightarrow m=2
$$

So we obtain the equation $y=2(x-1)+1$ or $y=2 x-1$.
(c) If $x_{1}=x_{2}$, we obtain the equation $x=x_{1}$ (which represent a vertical line).

If $x_{1} \neq x_{2}$, the line through the two points is non-vertical. An equation of a (non-vertical) line through the point $\left(x_{1}, y_{1}\right)$ is

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

where m is some real number. This line contains the point $\left(x_{2}, y_{2}\right)$ if and only if

$$
y_{2}-y_{1}=m\left(x_{2}-x_{1}\right) \Longleftrightarrow m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

So we obtain the equation

$$
y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)
$$

(d) The slope of a line perpendicular to a line with slope $m=2$, is $m=-\frac{1}{2}$. So we get the equation $y=-\frac{1}{2} x$.
1.38 Observe that

$$
\frac{a x}{4(x+1)} / \frac{a x^{2}+4 a x}{x^{2}-1}=\frac{a x}{4(x+1)} / \frac{a x(x+4)}{(x-1)(x+1)}
$$

this expression is not defined for $x=-4, x=-1, x=0$ and $x=1$.
Further, for $x \notin\{-4,-1,0,1\}$,

$$
\frac{a x}{4(x+1)} / \frac{a x^{2}+4 a x}{x^{2}-1}=\frac{a x}{4(x+1)} / \frac{a x(x+4)}{(x-1)(x+1)}=\frac{a x}{4(x+1)} \cdot \frac{(x-1)(x+1)}{a x(x+4)}=\frac{x-1}{4(x+4)}
$$

1.40 We have

$$
{ }^{2} \log 3+{ }^{4} \log 3={ }^{2} \log 3+\frac{{ }^{2} \log 3}{{ }^{2} \log 4}={ }^{2} \log 3+\frac{{ }^{2} \log 3}{2}=1 \frac{1}{2}^{2} \log 3 .
$$

