1.9 According to Theorem 1,
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2.2 (a) FornElNWeintroducethestatementp(n):ﬁ—i—ﬁ—i—m—i—---—kn(nJrl):nil.
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(1) First we show that the statement P(1) is true: ——— =4 = ——
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(2) Let k € IN and assume that P(k) is true, that is: ﬁ+rﬁ+m+...+k(k+l) = ia 1
Then
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This proves that P(k + 1) is true.

According to the Principle of Induction, the statement P(n) is true for all n € IN.
(b) For n € IN we introduce the statement P(n): n < 2.
(1) First we show that the statement P(1) is true: 1 < 2 = 21.
(2) Let k € IN and assume that P(k) is true, that is: k < 2*.
Then

k+1<28+1<2F+28 =228 =2k,
(alternatively : k+1<k+k=2k<2-2F= 2k+1.)
This proves that P(k + 1) is true.

According to the Principle of Induction, the statement P(n) is true for all n € IN.

2.3 Let r e R\ {1}

For n € IN we introduce the statement P(n): 1 +r +72 4. + 7" = —r
1
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(1) First we show that the statement P(1) is true: 1+ r = "
L=r k+1
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(2) Let k € IN and assume that P(k) is true, that is: 1+r+7’2+~~~+rk:17r
—r
Then
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This proves that P(k + 1) is true.

According to the Principle of Induction, the statement P(n) is true for all n € IN.
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2.4 For n € IN we introduce the statement P(n): -+ —= > /n.
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(1) Since we have to prove that the statement P(n) is true for n > 2, we have to check in this case
whether the statement P(2) is true'
1
Indeed, P(2) is true because —= > /2 (check it yourself).
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2) Let k € IN, k > 2 and assume that P(k) is true, that is: —+—+---—|—— > Vk.
(2) () AtA 7k
Then
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This proves that P(k + 1) is true.
According to the Principle of Induction, the statement P(n) is true for all n > 2.

2.5 For n € IN we introduce the statement P(n): 2™ < (n+ 1)\
(1) First we show that the statement P(1) is true: 2! =2 <2 =21 = (1 + 1)..
(2) Let k € IN and assume that P (k) is true, that is: 2% < (k+ 1)
Then
M — 2. 98 <ok + DI < (k+2)(k+ 1) =(k+2)! = ((k+1)+ 1)

This proves that P(k + 1) is true.
According to the Principle of Induction, the statement P(n) is true for all n € IN.

2.6 (a) By using the formula for (n) we find that
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(b) Let ne N and i € {1,2,...,n}. Then
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2.7 (a) If we choose a =1 and b = 1, the Binomial Formula leads to

2" = (1+1)" = zn: (?) 1741 = zn: (?)

i=0 =0

(b) If we choose a =1 and b = 1, the Binomial Formula leads to
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Here we used Exercise 6 (b).
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2.8 For n € IN we introduce the statement P(n): H(l +2) < (n+1)>
i
i=1
(1) First we show that the statement P(1) is true: 1+ 2 =3 <4 = (1+ 1)
k
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(2) Let k € IN and assume that P(k) is true, that is: H(l + ;) < (k+1)%

i=1
Then
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=k+1)2+20k+1) =k +4k+3 < k> + 4k +4=(k+2)%
This proves that P(k + 1) is true.

According to the Principle of Induction, the statement P(n) is true for all n € IN.



