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2.2 (a) For n ∈ IN we introduce the statement P(n):
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This proves that P(k + 1) is true.

According to the Principle of Induction, the statement P(n) is true for all n ∈ IN.

(b) For n ∈ IN we introduce the statement P(n): n < 2n.

(1) First we show that the statement P(1) is true: 1 < 2 = 21.

(2) Let k ∈ IN and assume that P(k) is true, that is: k < 2k.

Then

k + 1 < 2k + 1 < 2k + 2k = 2 · 2k = 2k+1.

k + 1 ≤ k + k = 2k < 2 · 2k = 2k+1.
)(

alternatively :

This proves that P(k + 1) is true.

According to the Principle of Induction, the statement P(n) is true for all n ∈ IN.

2.3 Let r ∈ IR \ {1}
For n ∈ IN we introduce the statement P(n): 1 + r + r2 + · · ·+ rn =

1− rn+1
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.

(1) First we show that the statement P(1) is true: 1 + r =
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.

(2) Let k ∈ IN and assume that P(k) is true, that is: 1 + r + r2 + · · ·+ rk =
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This proves that P(k + 1) is true.

According to the Principle of Induction, the statement P(n) is true for all n ∈ IN.



2.4 For n ∈ IN we introduce the statement P(n):
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(1) Since we have to prove that the statement P(n) is true for n ≥ 2, we have to check in this case

whether the statement P(2) is true!

Indeed, P(2) is true because
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(2) Let k ∈ IN, k ≥ 2 and assume that P(k) is true, that is:
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This proves that P(k + 1) is true.

According to the Principle of Induction, the statement P(n) is true for all n ≥ 2.

2.5 For n ∈ IN we introduce the statement P(n): 2n ≤ (n+ 1)!.

(1) First we show that the statement P(1) is true: 21 = 2 ≤ 2 = 2! = (1 + 1)!.

(2) Let k ∈ IN and assume that P(k) is true, that is: 2k ≤ (k + 1)!.

Then

2k+1 = 2 · 2k ≤ 2(k + 1)! ≤ (k + 2)(k + 1)! = (k + 2)! =
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)
!.

This proves that P(k + 1) is true.

According to the Principle of Induction, the statement P(n) is true for all n ∈ IN.
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2.7 (a) If we choose a = 1 and b = 1, the Binomial Formula leads to
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(b) If we choose a = 1 and b = 1, the Binomial Formula leads to
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Here we used Exercise 6 (b).

2.8 For n ∈ IN we introduce the statement P(n):
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(1) First we show that the statement P(1) is true: 1 + 2

1
= 3 < 4 = (1 + 1)2.

(2) Let k ∈ IN and assume that P(k) is true, that is:
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This proves that P(k + 1) is true.

According to the Principle of Induction, the statement P(n) is true for all n ∈ IN.


