1.9 According to Theorem 1,

$$
\sum_{i=2}^{n} \frac{1}{i(i-1)}=\sum_{i=2}^{n}\left[\frac{1}{i-1}-\frac{1}{i}\right]=\sum_{i=2}^{n} \frac{1}{i-1}-\sum_{i=2}^{n} \frac{1}{i}=\sum_{j=1}^{n-1} \frac{1}{j}-\sum_{i=2}^{n} \frac{1}{i}=1-\frac{1}{n}
$$

2.2 (a) For $n \in \mathbb{N}$ we introduce the statement $\mathcal{P}(n): \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1}$.
(1) First we show that the statement $\mathcal{P}(1)$ is true: $\frac{1}{1(1+1)}=\frac{1}{2}=\frac{1}{1+1}$.
(2) Let $k \in \mathbb{N}$ and assume that $\mathcal{P}(k)$ is true, that is: $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{k(k+1)}=\frac{k}{k+1}$.

Then

$$
\begin{aligned}
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{k(k+1)}+\frac{1}{(k+1)(k+2)} & =\frac{k}{k+1}+\frac{1}{(k+1)(k+2)} \\
& =\frac{k^{2}+2 k+1}{(k+1)(k+2)}=\frac{(k+1)^{2}}{(k+1)(k+2)} \\
& =\frac{k+1}{k+2}=\frac{k+1}{(k+1)+1} .
\end{aligned}
$$

This proves that $\mathcal{P}(k+1)$ is true.
According to the Principle of Induction, the statement $\mathcal{P}(n)$ is true for all $n \in \mathbb{N}$.
(b) For $n \in \mathbb{N}$ we introduce the statement $\mathcal{P}(n): n<2^{n}$.
(1) First we show that the statement $\mathcal{P}(1)$ is true: $1<2=2^{1}$.
(2) Let $k \in \mathbb{N}$ and assume that $\mathcal{P}(k)$ is true, that is: $k<2^{k}$.

Then

$$
k+1<2^{k}+1<2^{k}+2^{k}=2 \cdot 2^{k}=2^{k+1} .
$$

(alternatively: $\quad k+1 \leq k+k=2 k<2 \cdot 2^{k}=2^{k+1}$.)
This proves that $\mathcal{P}(k+1)$ is true.
According to the Principle of Induction, the statement $\mathcal{P}(n)$ is true for all $n \in \mathbb{N}$.
2.3 Let $r \in \mathbb{R} \backslash\{1\}$

For $n \in \mathbb{N}$ we introduce the statement $\mathcal{P}(n): 1+r+r^{2}+\cdots+r^{n}=\frac{1-r^{n+1}}{1-r}$.
(1) First we show that the statement $\mathcal{P}(1)$ is true: $1+r=\frac{1-r^{2}}{1-r}$.
(2) Let $k \in \mathbb{N}$ and assume that $\mathcal{P}(k)$ is true, that is: $1+r+r^{2}+\cdots+r^{k}=\frac{1-r^{k+1}}{1-r}$.

Then

$$
\begin{aligned}
1+r+r^{2}+\cdots+r^{k}+r^{k+1} & =\frac{1-r^{k+1}}{1-r}+r^{k+1} \\
& =\frac{1-r^{k+1}}{1-r}+\frac{r^{k+1}-r^{k+2}}{1-r} \\
& =\frac{1-r^{k+2}}{1-r}
\end{aligned}
$$

This proves that $\mathcal{P}(k+1)$ is true.
According to the Principle of Induction, the statement $\mathcal{P}(n)$ is true for all $n \in \mathbb{N}$.
2.4 For $n \in \mathbb{N}$ we introduce the statement $\mathcal{P}(n): \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}}>\sqrt{n}$.
(1) Since we have to prove that the statement $\mathcal{P}(n)$ is true for $n \geq 2$, we have to check in this case whether the statement $\mathcal{P}(2)$ is true!
Indeed, $\mathcal{P}(2)$ is true because $\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}>\sqrt{2}$ (check it yourself).
(2) Let $k \in \mathbb{N}, k \geq 2$ and assume that $\mathcal{P}(k)$ is true, that is: $\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{k}}>\sqrt{k}$.

Then

$$
\begin{aligned}
\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}} & >\sqrt{k}+\frac{1}{\sqrt{k+1}}=\frac{\sqrt{k} \sqrt{k+1}+1}{\sqrt{k+1}} \\
& =\frac{\sqrt{k^{2}+k}+1}{\sqrt{k+1}}>\frac{\sqrt{k^{2}}+1}{\sqrt{k+1}}=\frac{k+1}{\sqrt{k+1}}=\sqrt{k+1}
\end{aligned}
$$

This proves that $\mathcal{P}(k+1)$ is true.
According to the Principle of Induction, the statement $\mathcal{P}(n)$ is true for all $n \geq 2$.
2.5 For $n \in \mathbb{N}$ we introduce the statement $\mathcal{P}(n): 2^{n} \leq(n+1)$!.
(1) First we show that the statement $\mathcal{P}(1)$ is true: $2^{1}=2 \leq 2=2$! $=(1+1)$!.
(2) Let $k \in \mathbb{N}$ and assume that $\mathcal{P}(k)$ is true, that is: $2^{k} \leq(k+1)$!.

Then

$$
2^{k+1}=2 \cdot 2^{k} \leq 2(k+1)!\leq(k+2)(k+1)!=(k+2)!=((k+1)+1)!.
$$

This proves that $\mathcal{P}(k+1)$ is true.
According to the Principle of Induction, the statement $\mathcal{P}(n)$ is true for all $n \in \mathbb{N}$.
2.6 (a) By using the formula for $\binom{n}{r}$ we find that

$$
\begin{aligned}
\binom{n}{0} & =\frac{n!}{(n-0)!0!}=\frac{n!}{n!}=1, \\
\binom{n}{1} & =\frac{n!}{(n-1)!1!}=\frac{n!}{(n-1)!}=\frac{n(n-1)!}{(n-1)!}=n, \\
\binom{n}{n-1} & =\frac{n!}{1!(n-1)!}=\frac{n!}{(n-1)!}=n
\end{aligned}
$$

and

$$
\binom{n}{n}=\frac{n!}{0!n!}=\frac{n!}{n!}=1
$$

(b) Let $n \in \mathbb{N}$ and $i \in\{1,2, \ldots, n\}$. Then

$$
\begin{aligned}
\binom{n}{i-1}+\binom{n}{i} & =\frac{n!}{(n-i+1)!(i-1)!}+\frac{n!}{(n-i)!i!} \\
& =\frac{n!}{(n-i+1)(n-i)!(i-1)!}+\frac{n!}{(n-i)!i(i-1)!} \\
& =\frac{(n!}{(n-i+1)(n-i)!i(i-1)!}+\frac{(n-i+1) n!}{(n-i+1)(n-i)!i(i-1)!} \\
& =\frac{n!(i+n-i+1)}{(n-i+1)!i!}=\frac{n!(n+1)}{(n-i+1)!i!} \\
& =\frac{(n+1)!}{(n+1-i)!i!}=\binom{n+1}{i}
\end{aligned}
$$

2.7 (a) If we choose $a=1$ and $b=1$, the Binomial Formula leads to

$$
2^{n}=(1+1)^{n}=\sum_{i=0}^{n}\binom{n}{i} 1^{n-i} 1^{i}=\sum_{i=0}^{n}\binom{n}{i}
$$

(b) If we choose $a=1$ and $b=1$, the Binomial Formula leads to

$$
\begin{aligned}
2^{n-1} & =\sum_{i=0}^{n-1}\binom{n-1}{i}=\underbrace{\binom{n-1}{0}+\binom{n-1}{1}}_{=\binom{n}{1}}+\underbrace{\binom{n-1}{2}+\binom{n-1}{3}}_{=\binom{n}{3}}+\cdots+\binom{n-1}{n-1} \\
& =\binom{n}{1}+\binom{n}{3}+\cdots .
\end{aligned}
$$

Here we used Exercise 6 (b).
2.8 For $n \in \mathbb{N}$ we introduce the statement $\mathcal{P}(n): \prod_{i=1}^{n}\left(1+\frac{2}{i}\right)<(n+1)^{2}$.
(1) First we show that the statement $\mathcal{P}(1)$ is true: $1+\frac{2}{1}=3<4=(1+1)^{2}$.
(2) Let $k \in \mathbb{N}$ and assume that $\mathcal{P}(k)$ is true, that is: $\prod_{i=1}^{k}\left(1+\frac{2}{i}\right)<(k+1)^{2}$.

Then

$$
\begin{aligned}
\prod_{i=1}^{k+1}\left(1+\frac{2}{i}\right) & =\left[\prod_{i=1}^{k}\left(1+\frac{2}{i}\right)\right] \cdot\left(1+\frac{2}{k+1}\right)<(k+1)^{2}\left(1+\frac{2}{k+1}\right) \\
& =(k+1)^{2}+2(k+1)=k^{2}+4 k+3<k^{2}+4 k+4=(k+2)^{2}
\end{aligned}
$$

This proves that $\mathcal{P}(k+1)$ is true.
According to the Principle of Induction, the statement $\mathcal{P}(n)$ is true for all $n \in \mathbb{N}$.

