2.1 (a) For n € IN we introduce the statement Q(n): 9" — 5 is not a multiple of 8.
(1) First we show that the statement Q(1) is true: 9* — 5 = 4 is not a multiple of 8.
(2) Let k € IN and assume that Q(k) is true, that is: 9% — 5 is not a multiple of 8.
Suppose that 91 — 5 is a multiple of 8. Then
OFtl _5-9.9F _5=8.9F49F _5—=09F 5= oFtl_5 _ 8.9F
is a multiple of 8 is a multiple of 8
which is a contradiction.

This proves that P(k + 1) is true.

According to the Principle of Induction, the statement Q(n) is true for all n € IN.
(b) Note that

9" —5=9"-1-4=(9-1)(9" ' +9" 24 ... +1)—4=8(9""1+9"2+... +1)—4

=4-[209" ' +9" 2+ 1) —1].

is a multiple of 4

n

2.9 For n € IN we introduce the statement P(n): Z i*=1Inn+1)(2n+1).

=1

(1) First we show that the statement P(1) is true: 1> =1=%-1-2-3.
k
(2) Let k € IN and assume that P(k) is true, that is: Zi2 = 1k(k+1)(2k +1).
i=1
Then
k1

k
=i+ (k+1)* = tk(k + 1)(2k + 1) + (k + 1)?

(k+1)[kk+1)+6(k+1)] = 3(k+1) 2k + Tk + 6] = :(k + 1) [(2k + 3)(k + 2)]

N[

(k+1)(k+2)(2k+3) = s(k+ 1)[(k+ 1) + 1][2(k + 1) + 1].

<N

This proves that P(k + 1) is true.

According to the Principle of Induction, the statement P(n) is true for all n € IN.

2.10 Let z € (—1,1). Since the relation holds for x = 0, we will assume that = # 0. Then 0 < |z| < 1.

For n € IN we introduce the statement P(n): |z"| < |z|.
(1) First we show that the statement P(1) is true: |zt < |z].
(2) Let k € IN and assume that P(k) is true, that is: |2*| < |z|.
Then, according to Theorem 1.2 (b),
@M = ab o] = |2¥] o] < o] < al.
lz|<1
This proves that P(k + 1) is true.

According to the Principle of Induction, the statement P(n) is true for all n € IN. Since x was arbitrarily

chosen, the statement is true for all z € (—1,1) and all n € IN.



no1 1
2.11 For n € IN we introduce the statement P(n): > 5 <2 - 5T
i=1 7! n-
(1) First we show that the statement P(1) is true: 1 § 2-1.
1 1
(2) Let k € IN and assume that P(k) is true, that is: Z; a <2-— S
Then
i LIS o WS U I I
il =l ) - 21 (k4 1)!
1 1 1 1 1
< 29— 4 —9_ 9.4 —9_
Exercise 5 2k—1 + 2k 2k + 2k 2k

This proves that P(k + 1) is true.
According to the Principle of Induction, the statement P(n) is true for all n € IN.

2.12 Let n € IN and let k € {1,2,---,n}. Then

n k-n! n!
k<k> T —R)E T (m—k) (k- 1)

and

n—1\  nn-1) B n!
”(k_1> O R

2.13 We will determine the sum of all the numbers in the array by first finding the sum of the numbers in

each of the m rows. The sum of the elements in the ith row is
@il + G2 + -+ g :Zaij-

Adding all these row sums leads to _

> ().

i=1 Nj=1
Next we will determine the sum of all the numbers in the array by first finding the sum of the numbers
in each of the n columns. The sum of the elements in the jth column is

Ajj + Qjp15 00 Ay = E al]

Adding all these column sums leads to

Obviously, the two results are equal:



2.14 For n € IN we introduce the statement P(n): ¢, = 2™.
(1) First we show that the statement P(1) is true: ¢; = 2 = 2.
(2) Let k € IN and assume that P(k) is true, that is: ¢, = 2*.
Then

thp1 = 2t = 2 x 2F = 2F+1,

This proves that P(k + 1) is true.

According to the Principle of Induction, the statement P(n) is true for all n € IN.

2.15 The numbers a — 1 and b — 1, which play a role in part (b) of the 'proof’, can be equal to zero. As zero

is not a natural number, you cannot apply the induction hypothesis.

2.16 Let 0 < a < b. For n € IN we introduce the statement P(n): a™ < b™.
(1) First we show that the statement P(1) is true: a < b.
(2) Let k € IN and assume that P (k) is true, that is: a* < b¥.
Then

' =a-adf <a-b* <b- V¥ =0pF.

[Note that the first inequality is obtained by multiplying both sides of the inequality a* < b* by
the positive number a. The second inequality is obtained by multiplying both sides of the inequality
a < b by the positive number b*.]
This proves that P(k + 1) is true.

According to the Principle of Induction, the statement P(n) is true for all n € IN.



