
2.1 (a) For n ∈ IN we introduce the statement Q(n): 9n − 5 is not a multiple of 8.

(1) First we show that the statement Q(1) is true: 91 − 5 = 4 is not a multiple of 8.

(2) Let k ∈ IN and assume that Q(k) is true, that is: 9k − 5 is not a multiple of 8.

Suppose that 9k+1 − 5 is a multiple of 8. Then

9k+1 − 5 = 9 · 9k − 5 = 8 · 9k + 9k − 5 =⇒ 9k − 5 = 9k+1 − 5
︸ ︷︷ ︸

is a multiple of 8

− 8 · 9k
︸ ︷︷ ︸

is a multiple of 8

,

which is a contradiction.

This proves that P(k + 1) is true.

According to the Principle of Induction, the statement Q(n) is true for all n ∈ IN.

(b) Note that

9n − 5 = 9n − 1− 4 = (9 − 1)(9n−1 + 9n−2 + · · ·+ 1)− 4 = 8(9n−1 + 9n−2 + · · ·+ 1)− 4

= 4 ·
[
2(9n−1 + 9n−2 + · · ·+ 1)− 1

]

︸ ︷︷ ︸

is a multiple of 4

.

2.9 For n ∈ IN we introduce the statement P(n):

n∑

i=1

i2 = 1

6
n(n+ 1)(2n+ 1).

(1) First we show that the statement P(1) is true: 12 = 1 = 1

6
· 1 · 2 · 3.

(2) Let k ∈ IN and assume that P(k) is true, that is:

k∑

i=1

i2 = 1

6
k(k + 1)(2k + 1).

Then

k+1∑

i=1

i2 =

k∑

i=1

i2 + (k + 1)2 = 1

6
k(k + 1)(2k + 1) + (k + 1)2

= 1

6
(k + 1) [k(2k + 1) + 6(k + 1)] = 1

6
(k + 1)

[
2k2 + 7k + 6

]
= 1

6
(k + 1) [(2k + 3)(k + 2)]

= 1

6
(k + 1)(k + 2)(2k + 3) = 1

6
(k + 1)[(k + 1) + 1][2(k + 1) + 1].

This proves that P(k + 1) is true.

According to the Principle of Induction, the statement P(n) is true for all n ∈ IN.

2.10 Let x ∈ (−1, 1). Since the relation holds for x = 0, we will assume that x 6= 0. Then 0 < |x| < 1.

For n ∈ IN we introduce the statement P(n): |xn| ≤ |x|.

(1) First we show that the statement P(1) is true: |x1| ≤ |x|.

(2) Let k ∈ IN and assume that P(k) is true, that is: |xk| ≤ |x|.

Then, according to Theorem 1.2 (b),

|xk+1| = |xk · x| = |xk| · |x| ≤
|x|<1

|xk| ≤ |x|.

This proves that P(k + 1) is true.

According to the Principle of Induction, the statement P(n) is true for all n ∈ IN. Since x was arbitrarily

chosen, the statement is true for all x ∈ (−1, 1) and all n ∈ IN.



2.11 For n ∈ IN we introduce the statement P(n):
n∑

i=1

1

i!
≤ 2−

1

2n−1
.

(1) First we show that the statement P(1) is true: 1 ≤ 2− 1.

(2) Let k ∈ IN and assume that P(k) is true, that is:
k∑

i=1

1

i!
≤ 2−

1

2k−1
.

Then
k+1∑

i=1

1

i!
=

k∑

i=1

1

i!
+

1

(k + 1)!
≤ 2−

1

2k−1
+

1

(k + 1)!

≤
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2−
1

2k−1
+

1

2k
= 2− 2 ·

1

2k
+

1

2k
= 2−

1

2k
.

This proves that P(k + 1) is true.

According to the Principle of Induction, the statement P(n) is true for all n ∈ IN.

2.12 Let n ∈ IN and let k ∈ {1, 2, · · · , n}. Then

k

(
n

k

)

=
k · n!

(n− k)! k!
=

n!

(n− k)! (k − 1)!

and

n

(
n− 1

k − 1

)

=
n(n− 1)!

(n− k)! (k − 1)!
=

n!

(n− k)! (k − 1)!
.

2.13 We will determine the sum of all the numbers in the array by first finding the sum of the numbers in

each of the m rows. The sum of the elements in the ith row is

ai1 + ai2 + · · ·+ aii =

i∑

j=1

aij .

Adding all these row sums leads to
m∑

i=1

( i∑

j=1

aij

)

.

Next we will determine the sum of all the numbers in the array by first finding the sum of the numbers

in each of the n columns. The sum of the elements in the jth column is

ajj + aj+1j + · · ·+ amj =

m∑

i=j

aij .

Adding all these column sums leads to
m∑

j=1

( m∑

i=j

aij

)

.

Obviously, the two results are equal:

m∑

i=1

( i∑

j=1

aij

)

=
m∑

j=1

( m∑

i=j

aij

)

.



2.14 For n ∈ IN we introduce the statement P(n): tn = 2n.

(1) First we show that the statement P(1) is true: t1 = 21 = 2.

(2) Let k ∈ IN and assume that P(k) is true, that is: tk = 2k.

Then

tk+1 = 2tk = 2× 2k = 2k+1.

This proves that P(k + 1) is true.

According to the Principle of Induction, the statement P(n) is true for all n ∈ IN.

2.15 The numbers a− 1 and b− 1, which play a role in part (b) of the ’proof’, can be equal to zero. As zero

is not a natural number, you cannot apply the induction hypothesis.

2.16 Let 0 < a < b. For n ∈ IN we introduce the statement P(n): an < bn.

(1) First we show that the statement P(1) is true: a < b.

(2) Let k ∈ IN and assume that P(k) is true, that is: ak < bk.

Then

ak+1 = a · ak < a · bk < b · bk = bk+1.

[Note that the first inequality is obtained by multiplying both sides of the inequality ak < bk by

the positive number a. The second inequality is obtained by multiplying both sides of the inequality

a < b by the positive number bk.]

This proves that P(k + 1) is true.

According to the Principle of Induction, the statement P(n) is true for all n ∈ IN.


