2.1 (a) For $n \in \mathbb{N}$ we introduce the statement $\mathcal{Q}(n): 9^{n}-5$ is not a multiple of 8 .
(1) First we show that the statement $\mathcal{Q}(1)$ is true: $9^{1}-5=4$ is not a multiple of 8 .
(2) Let $k \in \mathbb{N}$ and assume that $\mathcal{Q}(k)$ is true, that is: $9^{k}-5$ is not a multiple of 8 .

Suppose that $9^{k+1}-5$ is a multiple of 8 . Then

$$
9^{k+1}-5=9 \cdot 9^{k}-5=8 \cdot 9^{k}+9^{k}-5 \Longrightarrow 9^{k}-5=\underbrace{9^{k+1}-5}_{\text {is a multiple of } 8}-\underbrace{8 \cdot 9^{k}}_{\text {is a multiple of } 8}
$$

which is a contradiction.
This proves that $\mathcal{P}(k+1)$ is true.
According to the Principle of Induction, the statement $\mathcal{Q}(n)$ is true for all $n \in \mathbb{N}$.
(b) Note that

$$
\begin{aligned}
9^{n}-5 & =9^{n}-1-4=(9-1)\left(9^{n-1}+9^{n-2}+\cdots+1\right)-4=8\left(9^{n-1}+9^{n-2}+\cdots+1\right)-4 \\
& =\underbrace{4 \cdot\left[2\left(9^{n-1}+9^{n-2}+\cdots+1\right)-1\right]}_{\text {is a multiple of } 4}
\end{aligned}
$$

2.9 For $n \in \mathbb{N}$ we introduce the statement $\mathcal{P}(n): \sum_{i=1}^{n} i^{2}=\frac{1}{6} n(n+1)(2 n+1)$.
(1) First we show that the statement $\mathcal{P}(1)$ is true: $1^{2}=1=\frac{1}{6} \cdot 1 \cdot 2 \cdot 3$.
(2) Let $k \in \mathbb{N}$ and assume that $\mathcal{P}(k)$ is true, that is: $\sum_{i=1}^{k} i^{2}=\frac{1}{6} k(k+1)(2 k+1)$. Then

$$
\begin{aligned}
\sum_{i=1}^{k+1} i^{2} & =\sum_{i=1}^{k} i^{2}+(k+1)^{2}=\frac{1}{6} k(k+1)(2 k+1)+(k+1)^{2} \\
& =\frac{1}{6}(k+1)[k(2 k+1)+6(k+1)]=\frac{1}{6}(k+1)\left[2 k^{2}+7 k+6\right]=\frac{1}{6}(k+1)[(2 k+3)(k+2)] \\
& =\frac{1}{6}(k+1)(k+2)(2 k+3)=\frac{1}{6}(k+1)[(k+1)+1][2(k+1)+1] .
\end{aligned}
$$

This proves that $\mathcal{P}(k+1)$ is true.
According to the Principle of Induction, the statement $\mathcal{P}(n)$ is true for all $n \in \mathbb{N}$.
2.10 Let $x \in(-1,1)$. Since the relation holds for $x=0$, we will assume that $x \neq 0$. Then $0<|x|<1$.

For $n \in \mathbb{N}$ we introduce the statement $\mathcal{P}(n):\left|x^{n}\right| \leq|x|$.
(1) First we show that the statement $\mathcal{P}(1)$ is true: $\left|x^{1}\right| \leq|x|$.
(2) Let $k \in \mathbb{N}$ and assume that $\mathcal{P}(k)$ is true, that is: $\left|x^{k}\right| \leq|x|$.

Then, according to Theorem 1.2 (b),

$$
\left|x^{k+1}\right|=\left|x^{k} \cdot x\right|=\left|x^{k}\right| \cdot|x| \underset{|x|<1}{\leq}\left|x^{k}\right| \leq|x| .
$$

This proves that $\mathcal{P}(k+1)$ is true.
According to the Principle of Induction, the statement $\mathcal{P}(n)$ is true for all $n \in \mathbb{N}$. Since x was arbitrarily chosen, the statement is true for all $x \in(-1,1)$ and all $n \in \mathbb{N}$.
2.11 For $n \in \mathbb{N}$ we introduce the statement $\mathcal{P}(n): \sum_{i=1}^{n} \frac{1}{i!} \leq 2-\frac{1}{2^{n-1}}$.
(1) First we show that the statement $\mathcal{P}(1)$ is true: $1 \leq 2-1$.
(2) Let $k \in \mathbb{N}$ and assume that $\mathcal{P}(k)$ is true, that is: $\sum_{i=1}^{k} \frac{1}{i!} \leq 2-\frac{1}{2^{k-1}}$.

Then

$$
\begin{aligned}
\sum_{i=1}^{k+1} \frac{1}{i!}=\sum_{i=1}^{k} \frac{1}{i!}+\frac{1}{(k+1)!} & \leq 2-\frac{1}{2^{k-1}}+\frac{1}{(k+1)!} \\
& \leq 2-\frac{1}{2^{k-1}}+\frac{1}{2^{k}}=2-2 \cdot \frac{1}{2^{k}}+\frac{1}{2^{k}}=2-\frac{1}{2^{k}}
\end{aligned}
$$

This proves that $\mathcal{P}(k+1)$ is true.
According to the Principle of Induction, the statement $\mathcal{P}(n)$ is true for all $n \in \mathbb{N}$.
2.12 Let $n \in \mathbb{N}$ and let $k \in\{1,2, \cdots, n\}$. Then

$$
k\binom{n}{k}=\frac{k \cdot n!}{(n-k)!k!}=\frac{n!}{(n-k)!(k-1)!}
$$

and

$$
n\binom{n-1}{k-1}=\frac{n(n-1)!}{(n-k)!(k-1)!}=\frac{n!}{(n-k)!(k-1)!} .
$$

2.13 We will determine the sum of all the numbers in the array by first finding the sum of the numbers in each of the m rows. The sum of the elements in the i th row is

$$
a_{i 1}+a_{i 2}+\cdots+a_{i i}=\sum_{j=1}^{i} a_{i j}
$$

Adding all these row sums leads to

$$
\sum_{i=1}^{m}\left(\sum_{j=1}^{i} a_{i j}\right) .
$$

Next we will determine the sum of all the numbers in the array by first finding the sum of the numbers in each of the n columns. The sum of the elements in the j th column is

$$
a_{j j}+a_{j+1 j}+\cdots+a_{m j}=\sum_{i=j}^{m} a_{i j} .
$$

Adding all these column sums leads to

$$
\sum_{j=1}^{m}\left(\sum_{i=j}^{m} a_{i j}\right)
$$

Obviously, the two results are equal:

$$
\sum_{i=1}^{m}\left(\sum_{j=1}^{i} a_{i j}\right)=\sum_{j=1}^{m}\left(\sum_{i=j}^{m} a_{i j}\right) .
$$

2.14 For $n \in \mathbb{N}$ we introduce the statement $\mathcal{P}(n): t_{n}=2^{n}$.
(1) First we show that the statement $\mathcal{P}(1)$ is true: $t_{1}=2^{1}=2$.
(2) Let $k \in \mathbb{N}$ and assume that $\mathcal{P}(k)$ is true, that is: $t_{k}=2^{k}$.

Then

$$
t_{k+1}=2 t_{k}=2 \times 2^{k}=2^{k+1} .
$$

This proves that $\mathcal{P}(k+1)$ is true.
According to the Principle of Induction, the statement $\mathcal{P}(n)$ is true for all $n \in \mathbb{N}$.
2.15 The numbers $a-1$ and $b-1$, which play a role in part (b) of the 'proof', can be equal to zero. As zero is not a natural number, you cannot apply the induction hypothesis.
2.16 Let $0<a<b$. For $n \in \mathbb{N}$ we introduce the statement $\mathcal{P}(n): a^{n}<b^{n}$.
(1) First we show that the statement $\mathcal{P}(1)$ is true: $a<b$.
(2) Let $k \in \mathbb{N}$ and assume that $\mathcal{P}(k)$ is true, that is: $a^{k}<b^{k}$.

Then

$$
a^{k+1}=a \cdot a^{k}<a \cdot b^{k}<b \cdot b^{k}=b^{k+1} .
$$

[Note that the first inequality is obtained by multiplying both sides of the inequality $a^{k}<b^{k}$ by the positive number a. The second inequality is obtained by multiplying both sides of the inequality $a<b$ by the positive number b^{k}.]

This proves that $\mathcal{P}(k+1)$ is true.
According to the Principle of Induction, the statement $\mathcal{P}(n)$ is true for all $n \in \mathbb{N}$.

