3.4 My pocket calculator can represent only 8 digits. So I try to figure out when the terms of the sequences are equal to 0.6666666 .
If $n=6 \times 10^{6}$, then $t_{n}=0.6666665$.
If $n=7 \times 10^{6}$, then $t_{n}=0.6666666$.
Note that $v_{n}=t_{n^{2}}$.
If $n=2 \times 10^{3}$, then $v_{n}=0.6666665$.
If $n=3 \times 10^{3}$, then $v_{n}=0.6666666$.
If n is odd, $w_{n}=t_{n}$.
If $n=6 \times 10^{6}$, then $w_{n}=0.6666665$.
If $n=7 \times 10^{6}$, then $w_{n}=0.6666667$.
3.5 Let, for $n \in \mathbb{N}, s_{n}=(-1)^{n}$ and $t_{n}=(-1)^{n+1}$.

Since

$$
s_{n}+t_{n}=(-1)^{n}+(-1)^{n+1}=(-1)^{n}-(-1)^{n}=0 \text { for all } n \in \mathbb{N}
$$

the sum of the sequences $\left(s_{n}\right)_{n=1}^{\infty}$ and $\left(t_{n}\right)_{n=1}^{\infty}$ is the sequence $0,0,0,0, \ldots$.
Since

$$
s_{n}-t_{n}=(-1)^{n}-(-1)^{n+1}=(-1)^{n}+(-1)^{n}=2(-1)^{n} \text { for all } n \in \mathbb{N}
$$

the difference of the sequences $\left(s_{n}\right)_{n=1}^{\infty}$ and $\left(t_{n}\right)_{n=1}^{\infty}$ is the sequence $\left(2(-1)^{n}\right)_{n=1}^{\infty}$.
Since

$$
s_{n} \cdot t_{n}=(-1)^{n} \cdot(-1)^{n+1}=(-1)^{2 n+1}=-1 \text { for all } n \in \mathbb{N}
$$

the product of the sequences $\left(s_{n}\right)_{n=1}^{\infty}$ and $\left(t_{n}\right)_{n=1}^{\infty}$ is the sequence $-1,-1,-1, \ldots$.
Since

$$
\frac{s_{n}}{t_{n}}=\frac{(-1)^{n}}{(-1)^{n+1}}=(-1)^{-1}=-1 \text { for all } n \in \mathbb{N}
$$

the quotient of the sequences $\left(s_{n}\right)_{n=1}^{\infty}$ and $\left(t_{n}\right)_{n=1}^{\infty}$ is the sequence $-1,-1,-1, \ldots$.
3.8 (a) Since

$$
\frac{1}{\sqrt{n}}<\frac{1}{20} \Longleftrightarrow \sqrt{n}>20 \Longleftrightarrow n>400
$$

one can choose $N=400$.
Since

$$
\frac{1}{\sqrt{n}}<\frac{1}{101} \Longleftrightarrow \sqrt{n}>101 \Longleftrightarrow n>10201
$$

one can choose $N=10201$.
Since

$$
\frac{1}{\sqrt{n}}<10^{-4} \Longleftrightarrow \sqrt{n}>10^{4} \Longleftrightarrow n>10^{8}
$$

one can choose $N=10^{-8}$.
(b) Since

$$
\frac{1}{\sqrt{n}}<\varepsilon \Longleftrightarrow \sqrt{n}>\frac{1}{\varepsilon} \Longleftrightarrow n>\frac{1}{\varepsilon^{2}},
$$

one can choose $N=1 / \varepsilon^{2}$.
(c) Obviously, $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$. Indeed, if $\varepsilon>0$, then, according to part (b),

$$
\left|\frac{1}{\sqrt{n}}-0\right|<\varepsilon
$$

whenever $n>\frac{1}{\varepsilon^{2}}$.
3.9 (a) We suspect that the limit of the sequence $\left(\frac{1}{n+7}\right)_{n=1}^{\infty}$ is 0 . For $\varepsilon=0.1$ we have

$$
\left|\frac{1}{n+7}-0\right|<\varepsilon \Longleftrightarrow \frac{1}{n+7}<\frac{1}{10} \Longleftrightarrow n+7>10 \Longleftrightarrow n>3=N_{0.1}
$$

For $\varepsilon=0.01$ we have

$$
\left|\frac{1}{n+7}-0\right|<\varepsilon \Longleftrightarrow \frac{1}{n+7}<\frac{1}{100} \Longleftrightarrow n+7>100 \Longleftrightarrow n>93=N_{0.01}
$$

For an arbitrary ε, we have

$$
\left|\frac{1}{n+7}-0\right|<\varepsilon \Longleftrightarrow \frac{1}{n+7}<\varepsilon \Longleftrightarrow n+7>\frac{1}{\varepsilon} \Longleftrightarrow n>\frac{1}{\varepsilon}-7=N_{\varepsilon} .
$$

(b) We suspect that the limit of the sequence $\left(\frac{n}{n+7}\right)_{n=1}^{\infty}$ is 1 . For $\varepsilon=0.1$ we have

$$
\left|\frac{n}{n+7}-1\right|<\varepsilon \Longleftrightarrow \frac{7}{n+7}<\frac{1}{10} \Longleftrightarrow n+7>70 \Longleftrightarrow n>63=N_{0.1}
$$

For $\varepsilon=0.01$ we have

$$
\left|\frac{n}{n+7}-1\right|<\varepsilon \Longleftrightarrow \frac{7}{n+7}<\frac{1}{100} \Longleftrightarrow n+7>700 \Longleftrightarrow n>693=N_{0.01}
$$

For an arbitrary ε, we have

$$
\left|\frac{n}{n+7}-1\right|<\varepsilon \Longleftrightarrow \frac{7}{n+7}<\varepsilon \Longleftrightarrow n+7>\frac{7}{\varepsilon} \Longleftrightarrow n>\frac{7}{\varepsilon}-7=N_{\varepsilon}
$$

(c) We suspect that the limit of the sequence $\left(\frac{(-1)^{n+1}}{n+7}\right)_{n=1}^{\infty}$ is 0 . For $\varepsilon=0.1$ we have

$$
\left|\frac{(-1)^{n+1}}{n+7}-0\right|<\varepsilon \Longleftrightarrow \frac{1}{n+7}<\frac{1}{10} \Longleftrightarrow n+7>10 \Longleftrightarrow n>3=N_{0.1}
$$

For $\varepsilon=0.01$ we have

$$
\left|\frac{(-1)^{n+1}}{n+7}-0\right|<\varepsilon \Longleftrightarrow \frac{1}{n+7}<\frac{1}{100} \Longleftrightarrow n+7>100 \Longleftrightarrow n>93=N_{0.01}
$$

For an arbitrary ε, we have

$$
\left|\frac{(-1)^{n+1}}{n+7}-0\right|<\varepsilon \Longleftrightarrow \frac{1}{n+7}<\varepsilon \Longleftrightarrow n+7>\frac{1}{\varepsilon} \Longleftrightarrow n>\frac{1}{\varepsilon}-7=N_{\varepsilon}
$$

3.10 (a) Let $\varepsilon>0$. Note that

$$
\left|\frac{1}{n}-0\right|<\varepsilon \Longleftrightarrow \frac{1}{n}<\varepsilon \Longleftrightarrow n>\frac{1}{\varepsilon} .
$$

So if we choose $N=\frac{1}{\varepsilon}$, then for all $n>N$,

$$
\left|\frac{1}{n}-0\right|=\frac{1}{n}<\varepsilon
$$

This proves that $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.
3.11 Note that

$$
\left|\frac{1}{3 n}-0\right|<\varepsilon \Longleftrightarrow \frac{1}{3 n}<\varepsilon \Longleftrightarrow n>\frac{1}{3 \varepsilon}
$$

and

$$
\left|\frac{3}{n}-0\right|<\varepsilon \Longleftrightarrow n>\frac{3}{\varepsilon}
$$

Therefore we choose $N=\max \left\{\frac{1}{3 \varepsilon}, \frac{3}{\varepsilon}\right\}=\frac{3}{\varepsilon}$.
Then, for all $n>N$,

$$
\begin{aligned}
& \text { if } n \text { is even }\left|a_{n}-0\right|=\frac{1}{3 n}<\frac{\varepsilon}{9}<\varepsilon \\
& \text { if } n \text { is odd }\left|a_{n}-0\right|=\frac{3}{n}<\varepsilon
\end{aligned}
$$

This proves that $\lim _{n \rightarrow \infty} a_{n}=0$.
3.12 (a) Let $\varepsilon>0$. Note that

$$
\left|\frac{2 n-1}{n+2}-2\right|=\left|\frac{2 n-1}{n+2}-\frac{2 n+4}{n+2}\right|=\left|\frac{-5}{n+2}\right|=\frac{5}{n+2}
$$

Since

$$
\frac{5}{n+2}<\varepsilon \Longleftrightarrow n+2>\frac{5}{\varepsilon} \Longleftrightarrow n>\frac{5}{\varepsilon}-2,
$$

we choose $N=\frac{5}{\varepsilon}-2$. Then, for all $n>N$,

$$
\left|\frac{2 n-1}{n+2}-2\right|=\frac{5}{n+2}<\varepsilon
$$

This proves that $\lim _{n \rightarrow \infty} \frac{2 n-1}{n+2}=2$.
(b) Let $\varepsilon>0$. Note that, for all $n \in \mathbb{N}$,

$$
\left|\frac{1-n^{2}}{2 n^{2}+1}+\frac{1}{2}\right|=\left|\frac{1-n^{2}+n^{2}+\frac{1}{2}}{2 n^{2}+1}\right|=\frac{\frac{3}{2}}{2 n^{2}+1}<\frac{4}{2 n^{2}}
$$

Since

$$
\frac{4}{2 n^{2}}<\varepsilon \Longleftrightarrow n^{2}>\frac{2}{\varepsilon} \Longleftrightarrow n>\sqrt{\frac{2}{\varepsilon}}
$$

we choose $N=\sqrt{\frac{2}{\varepsilon}}$.
Then, for all $n>N$,

$$
\left|\frac{1-n^{2}}{2 n^{2}+1}+\frac{1}{2}\right|=\frac{\frac{3}{2}}{2 n^{2}+1}<\frac{2}{n^{2}}<\frac{2}{\frac{2}{\varepsilon}}=\varepsilon
$$

This proves that $\lim _{n \rightarrow \infty} \frac{1-n^{2}}{2 n^{2}+1}=-\frac{1}{2}$.
3.15 Assume that the sequence $\left(t_{n}\right)_{n=1}^{\infty}$ converges in our sense.

Let $k \in \mathbb{N}$. If we choose $\varepsilon=10^{-k}$, then a number $N \in \mathbb{R}$ can be found such that

$$
\left|t_{n}-\ell\right|<\varepsilon=10^{-k}
$$

whenever $n>N$. So the sequence converges in the other sense.
Next assume that the sequence $\left(t_{n}\right)_{n=1}^{\infty}$ converges in the sense described in the exercise.
Let $\varepsilon>0$. Choose a natural number k such that $10^{-k}<\varepsilon$.
Then a number $N \in \mathbb{R}$ can be found such that

$$
\left|t_{n}-\ell\right|<10^{-k}<\varepsilon
$$

whenever $n>N$. So the sequence converges in the our sense.

