
3.4 My pocket calculator can represent only 8 digits. So I try to figure out when the terms of the sequences

are equal to 0.6666666.

If n = 6× 106, then tn = 0.6666665.

If n = 7× 106, then tn = 0.6666666.

Note that vn = tn2 .

If n = 2× 103, then vn = 0.6666665.

If n = 3× 103, then vn = 0.6666666.

If n is odd, wn = tn.

If n = 6× 106, then wn = 0.6666665.

If n = 7× 106, then wn = 0.6666667.

3.5 Let, for n ∈ IN, sn = (−1)n and tn = (−1)n+1.

Since

sn + tn = (−1)n + (−1)n+1 = (−1)n − (−1)n = 0 for all n ∈ IN,

the sum of the sequences
(

sn
)

∞

n=1
and

(

tn
)

∞

n=1
is the sequence 0, 0, 0, 0, . . ..

Since

sn − tn = (−1)n − (−1)n+1 = (−1)n + (−1)n = 2(−1)n for all n ∈ IN,

the difference of the sequences
(

sn
)

∞

n=1
and

(

tn
)

∞

n=1
is the sequence

(

2(−1)n
)

∞

n=1
.

Since

sn · tn = (−1)n · (−1)n+1 = (−1)2n+1 = −1 for all n ∈ IN,

the product of the sequences
(

sn
)

∞

n=1
and

(

tn
)

∞

n=1
is the sequence −1,−1,−1, . . ..

Since
sn
tn

=
(−1)n

(−1)n+1
= (−1)−1 = −1 for all n ∈ IN,

the quotient of the sequences
(

sn
)

∞

n=1
and

(

tn
)

∞

n=1
is the sequence −1,−1,−1, . . ..

3.8 (a) Since
1√
n
< 1

20
⇐⇒ √

n > 20 ⇐⇒ n > 400,

one can choose N = 400.

Since
1√
n
< 1

101
⇐⇒ √

n > 101 ⇐⇒ n > 10 201,

one can choose N = 10 201.

Since
1√
n
< 10−4 ⇐⇒

√
n > 104 ⇐⇒ n > 108,

one can choose N = 10−8.

(b) Since
1√
n
< ε ⇐⇒

√
n >

1

ε
⇐⇒ n >

1

ε2
,

one can choose N = 1/ε2.



(c) Obviously, lim
n→∞

1√
n
= 0. Indeed, if ε > 0, then, according to part (b),

∣

∣

∣

∣

1√
n
− 0

∣

∣

∣

∣

< ε,

whenever n >
1

ε2
.

3.9 (a) We suspect that the limit of the sequence
( 1

n+ 7

)

∞

n=1

is 0. For ε = 0.1 we have

∣

∣

∣

1

n+ 7
− 0

∣

∣

∣
< ε ⇐⇒ 1

n+ 7
< 1

10
⇐⇒ n+ 7 > 10 ⇐⇒ n > 3 = N0.1

For ε = 0.01 we have

∣

∣

∣

1

n+ 7
− 0

∣

∣

∣
< ε ⇐⇒ 1

n+ 7
< 1

100
⇐⇒ n+ 7 > 100 ⇐⇒ n > 93 = N0.01.

For an arbitrary ε, we have

∣

∣

∣

1

n+ 7
− 0

∣

∣

∣
< ε ⇐⇒ 1

n+ 7
< ε ⇐⇒ n+ 7 >

1

ε
⇐⇒ n >

1

ε
− 7 = Nε.

(b) We suspect that the limit of the sequence
( n

n+ 7

)

∞

n=1

is 1. For ε = 0.1 we have

∣

∣

∣

n

n+ 7
− 1

∣

∣

∣
< ε ⇐⇒ 7

n+ 7
< 1

10
⇐⇒ n+ 7 > 70 ⇐⇒ n > 63 = N0.1

For ε = 0.01 we have

∣

∣

∣

n

n+ 7
− 1

∣

∣

∣
< ε ⇐⇒ 7

n+ 7
< 1

100
⇐⇒ n+ 7 > 700 ⇐⇒ n > 693 = N0.01.

For an arbitrary ε, we have

∣

∣

∣

n

n+ 7
− 1

∣

∣

∣
< ε ⇐⇒ 7

n+ 7
< ε ⇐⇒ n+ 7 >

7

ε
⇐⇒ n >

7

ε
− 7 = Nε.

(c) We suspect that the limit of the sequence
((−1)n+1

n+ 7

)

∞

n=1

is 0. For ε = 0.1 we have

∣

∣

∣

(−1)n+1

n+ 7
− 0

∣

∣

∣
< ε ⇐⇒ 1

n+ 7
< 1

10
⇐⇒ n+ 7 > 10 ⇐⇒ n > 3 = N0.1

For ε = 0.01 we have

∣

∣

∣

(−1)n+1

n+ 7
− 0

∣

∣

∣
< ε ⇐⇒ 1

n+ 7
< 1

100
⇐⇒ n+ 7 > 100 ⇐⇒ n > 93 = N0.01.

For an arbitrary ε, we have

∣

∣

∣

(−1)n+1

n+ 7
− 0

∣

∣

∣
< ε ⇐⇒ 1

n+ 7
< ε ⇐⇒ n+ 7 >

1

ε
⇐⇒ n >

1

ε
− 7 = Nε.



3.10 (a) Let ε > 0. Note that
∣

∣

∣

∣

1

n
− 0

∣

∣

∣

∣

< ε ⇐⇒ 1

n
< ε ⇐⇒ n >

1

ε
.

So if we choose N = 1

ε
, then for all n > N ,

∣

∣

∣

∣

1

n
− 0

∣

∣

∣

∣

=
1

n
< ε.

This proves that lim
n→∞

1

n
= 0.

3.11 Note that
∣

∣

∣

∣

1

3n
− 0

∣

∣

∣

∣

< ε ⇐⇒ 1

3n
< ε ⇐⇒ n >

1

3ε
∣

∣

∣

∣

3

n
− 0

∣

∣

∣

∣

< ε ⇐⇒ n >
3

ε
.and

Therefore we choose N = max{ 1

3ε
,
3

ε
} =

3

ε
.

Then, for all n > N ,

if n is even |an − 0| = 1

3n
<

ε

9
< ε

if n is odd |an − 0| = 3

n
< ε

This proves that lim
n→∞

an = 0.

3.12 (a) Let ε > 0. Note that
∣

∣

∣

∣

2n− 1

n+ 2
− 2

∣

∣

∣

∣

=

∣

∣

∣

∣

2n− 1

n+ 2
− 2n+ 4

n+ 2

∣

∣

∣

∣

=

∣

∣

∣

∣

−5

n+ 2

∣

∣

∣

∣

=
5

n+ 2
.

Since
5

n+ 2
< ε ⇐⇒ n+ 2 >

5

ε
⇐⇒ n >

5

ε
− 2,

we choose N =
5

ε
− 2. Then, for all n > N ,

∣

∣

∣

∣

2n− 1

n+ 2
− 2

∣

∣

∣

∣

=
5

n+ 2
< ε.

This proves that lim
n→∞

2n− 1

n+ 2
= 2.

(b) Let ε > 0. Note that, for all n ∈ IN,
∣

∣

∣

∣

1− n2

2n2 + 1
+ 1

2

∣

∣

∣

∣

=

∣

∣

∣

∣

1− n2 + n2 + 1

2

2n2 + 1

∣

∣

∣

∣

=
3

2

2n2 + 1
<

4

2n2
.

Since
4

2n2
< ε ⇐⇒ n2 >

2

ε
⇐⇒ n >

√

2

ε
,

we choose N =
√

2

ε
.

Then, for all n > N ,
∣

∣

∣

∣

1− n2

2n2 + 1
+ 1

2

∣

∣

∣

∣

=
3

2

2n2 + 1
<

2

n2
<

2
2

ε

= ε.

This proves that lim
n→∞

1− n2

2n2 + 1
= − 1

2
.



3.15 Assume that the sequence
(

tn
)

∞

n=1
converges in our sense.

Let k ∈ IN. If we choose ε = 10−k, then a number N ∈ IR can be found such that

|tn − `| < ε = 10−k,

whenever n > N . So the sequence converges in the other sense.

Next assume that the sequence
(

tn
)

∞

n=1
converges in the sense described in the exercise.

Let ε > 0. Choose a natural number k such that 10−k < ε.

Then a number N ∈ IR can be found such that

|tn − `| < 10−k < ε,

whenever n > N . So the sequence converges in the our sense.


