3.6 (a) We determine the first coordinate of the intersection S of the line segment joining P and @ with the line
y = 2 (as indicated in Figure 3).
Since

y=(2+tg)x — 2t

is the line through the points P and @, the term t;11 satisfies

2+ 2ty
24 ty)t —2tp =2=1t = .
(2 + te)tirr — 2tk L= S
So the sequence (tn)zo:l is (recursively) defined by
t =13
24 2t,
thy1 = 2—:_ i for n € IN.

(b) We will prove by induction that ¢, > 0 for all n € IN.
(1) Clearly t; = 1 > 0.
(2) Let k € IN and assume that t; > 0. Then
>0

—N—
24 2ty
241
——

>0

thy1 =

According to the Principle of Induction, ¢, > 0 for all n € IN.

37 Fork=1, N=3. Fork=2, N =5. For k=3, N=6. For k=4, N =8. For k=5, N = 10. For
k=6, N=11. For k=7, N =13 For £k =8, N = 15.
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3.9 (d) We suspect that the limit of the sequence (—') is 0. For € = 0.1 we have
n

'/ n=1
1 1 1
‘——O‘<a<:>—<—<:>n!>10<:>n>4.
n! nl 10

For ¢ = 0.01 we have

1 1
‘——0‘<a<:>—<L<:>n!>100<:>n>5.
n! n! 100

For an arbitrary e, we have

1 1 1
’——O’<E<:>—<E<:>n!>—.
n! n! €

As n! > n, we choose n > % Then for n > e !,

1 1
n!2n>—:>‘——0‘<a.
€ n!

2 o)
(e) We suspect that the limit of the sequence (%) is 0. For € = 0.1 we have
n n=1
2n 2 1 3 3
‘ O’<5<:>—<1—0<:>n +7>20n<=n’>—-20n+7>0
n3 47 n3 47

< 20 + /400 — 28
— s

—n?—2n+7>0<=n



So we may choose N = 20.
For € = 0.01 we have
2n 2n 1 3 3
|~ 0 < e e = < s e 0B T > 2000 = 8 — 200047 > 0
nd+7 n3 100

+7
< 200 4 /40000 — 28
5 .

—n?2—200n+7>0<n

So we may choose N = 200.

For an arbitrary e, we have

2 2 2 2
‘ - —0‘<s<:>—n <eemnt 47> D et 4750
nd+7 n3+7 € €
2 4
2 sy =—28 1—-72 1 1
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So we may choose N = %
2 00
(f) We suspect that the limit of the sequence (n—) is 1.
n2 + 7/ n=1
Observe that

2 2 2

‘ n n°—n°—17
n? 47

—n2+7—1’<8<:>‘

7 7 7
‘<5<:> Cee= —<e<e=ni>—<=n>4/-.
n2 € €

7
n?4+7

7
So we may choose N = \/j
€

By choosing ¢ equal to the value 0.1,0.01..., we can find the proper 'big N’.

3.10 (b) Let € > 0. Note that for all n € IN

1" -1 1
‘14-( >_1H< "L
n n n
Since % < ¢, whenever n > %,We chooseN:%.
Then, for all n > N,
1" 1" 1 1
‘1+< >_1H( Flolo o,
n n n =
€
—_1)"
This proves that lim 1—|—( ) =1
n— oo n

3.12 (¢) Let € > 0. Note that, for all n € IN|
n+1 1 1 1 1 1 2
—0| = — 1) = — — < — _ —.
’\/ n2 \/nz(n+ ) \/n+n2_\/n+n< n

2 2 2 2
AS\/j<£<:>—<52<:>n>—,wechooseN=—.

n n g2 2
Then, for alln > N,

€
[n+1 \/5
3 <3/ —<e.
n n
. . n+1
This proves that lim 4/ —— =0.
n—00 n




3.13 Let € > 0. Note that, for all n € IN,

(2)n = I 1 < 1 < 12
B (14 T 14dn T inond
Here the first inequality is based on Bernoulli’s Inequality:
(1+31)" >1+3n.
. 2 2 2
Since — < € whenever n > —, we choose N = —.
n € €
Then, for alln > N,
1 1 1 1 2 2
2 2\n
2yn _ |l = (2)» = = < <—=—-<5=c¢
) = ) (A+3)" " 1+in 3n n 2

This proves that lim ()" = 0.

n—00

3.14 Let € > 0. As lim t, =/, a number N exists such that

n—00

[t, — €| < e,

whenever n > N.
As forn > N,

[th — | <e< = —e<t, —L<e<= —ec<a, <e<=lay| <c¢,

it follows that lim a, = 0.
n—o0

As forn > N,
[th =l <e<= —e<t, l<e<=2WU—-c<t,+l<2We<=2U—-ec<b,<2+c¢
= —e<b, —2U<e=|b,— 2l <e,

it follows that lim b, = 2¢.
n—o0



