
3.6 (a) We determine the first coordinate of the intersection S of the line segment joining P and Q with the line

y = 2 (as indicated in Figure 3).

Since

y = (2 + tk)x− 2tk

is the line through the points P and Q, the term tk+1 satisfies

(2 + tk)tk+1 − 2tk = 2 =⇒ tk+1 =
2 + 2tk
2 + tk

.

So the sequence
(
tn
)
∞

n=1
is (recursively) defined by

t1 = 1

2

tn+1 =
2 + 2tn
2 + tn

for n ∈ IN.

(b) We will prove by induction that tn > 0 for all n ∈ IN.

(1) Clearly t1 = 1

2
> 0.

(2) Let k ∈ IN and assume that tk > 0. Then

tk+1 =

>0
︷ ︸︸ ︷

2 + 2tk
2 + tk
︸ ︷︷ ︸

>0

> 0.

According to the Principle of Induction, tn > 0 for all n ∈ IN.

3.7 For k = 1, N = 3. For k = 2, N = 5. For k = 3, N = 6. For k = 4, N = 8. For k = 5, N = 10. For

k = 6, N = 11. For k = 7, N = 13 For k = 8, N = 15.

3.9 (d) We suspect that the limit of the sequence
( 1

n!

)
∞

n=1

is 0. For ε = 0.1 we have

∣
∣
∣
1

n!
− 0

∣
∣
∣ < ε ⇐⇒ 1

n!
< 1

10
⇐⇒ n! > 10 ⇐⇒ n > 4.

For ε = 0.01 we have
∣
∣
∣
1

n!
− 0

∣
∣
∣ < ε ⇐⇒ 1

n!
< 1

100
⇐⇒ n! > 100 ⇐⇒ n > 5.

For an arbitrary ε, we have
∣
∣
∣
1

n!
− 0

∣
∣
∣ < ε ⇐⇒ 1

n!
< ε ⇐⇒ n! >

1

ε
.

As n! ≥ n, we choose n > 1

ε
. Then for n > ε−1,

n! ≥ n >
1

ε
=⇒

∣
∣
∣
1

n!
− 0

∣
∣
∣ < ε.

(e) We suspect that the limit of the sequence
( 2n

n3 + 7

)
∞

n=1

is 0. For ε = 0.1 we have

∣
∣
∣

2n

n3 + 7
− 0

∣
∣
∣ < ε ⇐⇒ 2n

n3 + 7
< 1

10
⇐⇒ n3 + 7 > 20n ⇐⇒ n3 − 20n+ 7 > 0

⇐= n2 − 20n+ 7 > 0 ⇐⇒ n >
20 +

√
400− 28

2
.



So we may choose N = 20.

For ε = 0.01 we have

∣
∣
∣

2n

n3 + 7
− 0

∣
∣
∣ < ε ⇐⇒ 2n

n3 + 7
< 1

100
⇐⇒ n3 + 7 > 200n ⇐⇒ n3 − 200n+ 7 > 0

⇐= n2 − 200n+ 7 > 0 ⇐⇒ n >
200 +

√
40000− 28

2
.

So we may choose N = 200.

For an arbitrary ε, we have

∣
∣
∣

2n

n3 + 7
− 0

∣
∣
∣ < ε ⇐⇒ 2n

n3 + 7
< ε ⇐⇒ n3 + 7 >

2n

ε
⇐⇒ n3 − 2n

ε
+ 7 > 0

⇐= n2 − 2n

ε
+ 7 > 0 ⇐⇒ n >

2

ε
+
√

4

ε2
− 28

2
=

1

ε
+

√

1− 7ε2

ε2
=

1

ε
+

1

ε

√

1− 7ε2

So we may choose N = 2

ε
.

(f) We suspect that the limit of the sequence
( n2

n2 + 7

)
∞

n=1

is 1.

Observe that

∣
∣
∣

n2

n2 + 7
− 1

∣
∣
∣ < ε ⇐⇒

∣
∣
∣
n2 − n2 − 7

n2 + 7

∣
∣
∣ < ε ⇐⇒ 7

n2 + 7
< ε ⇐=

7

n2
< ε ⇐⇒ n2 >

7

ε
⇐⇒ n >

√

7

ε
.

So we may choose N =

√

7

ε
.

By choosing ε equal to the value 0.1, 0.01. . ., we can find the proper ’big N ’.

3.10 (b) Let ε > 0. Note that for all n ∈ IN

∣
∣
∣
∣
1 +

(−1)n

n
− 1

∣
∣
∣
∣
=

∣
∣
∣
∣

(−1)n

n

∣
∣
∣
∣
=

1

n
.

Since 1

n
< ε, whenever n > 1

ε
, we choose N = 1

ε
.

Then, for all n > N ,
∣
∣
∣
∣
1 +

(−1)n

n
− 1

∣
∣
∣
∣
=

∣
∣
∣
∣

(−1)n

n

∣
∣
∣
∣
=

1

n
<

1
1

ε

= ε.

This proves that lim
n→∞

1 +
(−1)n

n
= 1.

3.12 (c) Let ε > 0. Note that, for all n ∈ IN,

∣
∣
∣
∣
∣

√

n+ 1

n2
− 0

∣
∣
∣
∣
∣
=

√

1

n2
(n+ 1) =

√

1

n
+

1

n2
≤

√

1

n
+

1

n
<

√

2

n
.

As

√

2

n
< ε ⇐⇒ 2

n
< ε2 ⇐⇒ n >

2

ε2
, we choose N =

2

ε2
.

Then, for all n > N ,
√

n+ 1

n2
<

√

2

n
< ε.

This proves that lim
n→∞

√

n+ 1

n2
= 0.



3.13 Let ε > 0. Note that, for all n ∈ IN,

(2
3
)n =

1

(3
2
)n

=
1

(1 + 1

2
)n

≤ 1

1 + 1

2
n
<

1
1

2
n
=

2

n
.

Here the first inequality is based on Bernoulli’s Inequality:

(
1 + 1

2

)n ≥ 1 + 1

2
n.

Since
2

n
< ε whenever n >

2

ε
, we choose N =

2

ε
.

Then, for all n > N ,

∣
∣(2

3
)n − 0

∣
∣ = (2

3
)n =

1

(3
2
)n

=
1

(1 + 1

2
)n

≤ 1

1 + 1

2
n
<

1
1

2
n
=

2

n
<

2
2

ε

= ε.

This proves that lim
n→∞

(2
3
)n = 0.

3.14 Let ε > 0. As lim
n→∞

tn = ℓ, a number N exists such that

|tn − ℓ| < ε,

whenever n > N .

As for n > N ,

|tn − ℓ| < ε ⇐⇒ −ε < tn − ℓ < ε ⇐⇒ −ε < an < ε ⇐⇒ |an| < ε,

it follows that lim
n→∞

an = 0.

As for n > N ,

|tn − ℓ| < ε ⇐⇒ −ε < tn − ℓ < ε ⇐⇒ 2ℓ− ε < tn + ℓ < 2ℓε ⇐⇒ 2ℓ− ε < bn < 2ℓ+ ε

⇐⇒ −ε < bn − 2ℓ < ε ⇐⇒ |bn − 2ℓ| < ε,

it follows that lim
n→∞

bn = 2ℓ.


