3.6 (a) We determine the first coordinate of the intersection S of the line segment joining P and Q with the line $y=2($ as indicated in Figure 3).
Since

$$
y=\left(2+t_{k}\right) x-2 t_{k}
$$

is the line through the points P and Q, the term t_{k+1} satisfies

$$
\left(2+t_{k}\right) t_{k+1}-2 t_{k}=2 \Longrightarrow t_{k+1}=\frac{2+2 t_{k}}{2+t_{k}}
$$

So the sequence $\left(t_{n}\right)_{n=1}^{\infty}$ is (recursively) defined by

$$
\begin{aligned}
t_{1} & =\frac{1}{2} \\
t_{n+1} & =\frac{2+2 t_{n}}{2+t_{n}} \quad \text { for } n \in \mathbb{N}
\end{aligned}
$$

(b) We will prove by induction that $t_{n}>0$ for all $n \in \mathbb{N}$.
(1) Clearly $t_{1}=\frac{1}{2}>0$.
(2) Let $k \in \mathbb{N}$ and assume that $t_{k}>0$. Then

$$
t_{k+1}=\overbrace{\frac{2+2 t_{k}}{>0}}^{\underbrace{2+t_{k}}_{>0}}>0 .
$$

According to the Principle of Induction, $t_{n}>0$ for all $n \in \mathbb{N}$.
3.7 For $k=1, N=3$. For $k=2, N=5$. For $k=3, N=6$. For $k=4, N=8$. For $k=5, N=10$. For $k=6, N=11$. For $k=7, N=13$ For $k=8, N=15$.
3.9 (d) We suspect that the limit of the sequence $\left(\frac{1}{n!}\right)_{n=1}^{\infty}$ is 0 . For $\varepsilon=0.1$ we have

$$
\left|\frac{1}{n!}-0\right|<\varepsilon \Longleftrightarrow \frac{1}{n!}<\frac{1}{10} \Longleftrightarrow n!>10 \Longleftrightarrow n>4
$$

For $\varepsilon=0.01$ we have

$$
\left|\frac{1}{n!}-0\right|<\varepsilon \Longleftrightarrow \frac{1}{n!}<\frac{1}{100} \Longleftrightarrow n!>100 \Longleftrightarrow n>5 .
$$

For an arbitrary ε, we have

$$
\left|\frac{1}{n!}-0\right|<\varepsilon \Longleftrightarrow \frac{1}{n!}<\varepsilon \Longleftrightarrow n!>\frac{1}{\varepsilon}
$$

As $n!\geq n$, we choose $n>\frac{1}{\varepsilon}$. Then for $n>\varepsilon^{-1}$,

$$
n!\geq n>\frac{1}{\varepsilon} \Longrightarrow\left|\frac{1}{n!}-0\right|<\varepsilon
$$

(e) We suspect that the limit of the sequence $\left(\frac{2 n}{n^{3}+7}\right)_{n=1}^{\infty}$ is 0 . For $\varepsilon=0.1$ we have

$$
\begin{aligned}
\left|\frac{2 n}{n^{3}+7}-0\right|<\varepsilon & \Longleftrightarrow \frac{2 n}{n^{3}+7}<\frac{1}{10} \Longleftrightarrow n^{3}+7>20 n \Longleftrightarrow n^{3}-20 n+7>0 \\
& \Longleftrightarrow n^{2}-20 n+7>0 \Longleftrightarrow n>\frac{20+\sqrt{400-28}}{2}
\end{aligned}
$$

So we may choose $N=20$.
For $\varepsilon=0.01$ we have

$$
\begin{aligned}
\left|\frac{2 n}{n^{3}+7}-0\right|<\varepsilon & \Longleftrightarrow \frac{2 n}{n^{3}+7}<\frac{1}{100} \Longleftrightarrow n^{3}+7>200 n \Longleftrightarrow n^{3}-200 n+7>0 \\
& \Longleftrightarrow n^{2}-200 n+7>0 \Longleftrightarrow n>\frac{200+\sqrt{40000-28}}{2}
\end{aligned}
$$

So we may choose $N=200$.
For an arbitrary ε, we have

$$
\begin{aligned}
\left|\frac{2 n}{n^{3}+7}-0\right|<\varepsilon & \Longleftrightarrow \frac{2 n}{n^{3}+7}<\varepsilon \Longleftrightarrow n^{3}+7>\frac{2 n}{\varepsilon} \Longleftrightarrow n^{3}-\frac{2 n}{\varepsilon}+7>0 \\
& \Longleftrightarrow n^{2}-\frac{2 n}{\varepsilon}+7>0 \Longleftrightarrow n>\frac{\frac{2}{\varepsilon}+\sqrt{\frac{4}{\varepsilon^{2}-28}}}{2}=\frac{1}{\varepsilon}+\sqrt{\frac{1-7 \varepsilon^{2}}{\varepsilon^{2}}}=\frac{1}{\varepsilon}+\frac{1}{\varepsilon} \sqrt{1-7 \varepsilon^{2}}
\end{aligned}
$$

So we may choose $N=\frac{2}{\varepsilon}$.
(f) We suspect that the limit of the sequence $\left(\frac{n^{2}}{n^{2}+7}\right)_{n=1}^{\infty}$ is 1 .

Observe that

$$
\left|\frac{n^{2}}{n^{2}+7}-1\right|<\varepsilon \Longleftrightarrow\left|\frac{n^{2}-n^{2}-7}{n^{2}+7}\right|<\varepsilon \Longleftrightarrow \frac{7}{n^{2}+7}<\varepsilon \Longleftrightarrow \frac{7}{n^{2}}<\varepsilon \Longleftrightarrow n^{2}>\frac{7}{\varepsilon} \Longleftrightarrow n>\sqrt{\frac{7}{\varepsilon}}
$$

So we may choose $N=\sqrt{\frac{7}{\varepsilon}}$.
By choosing ε equal to the value $0.1,0.01 \ldots$, we can find the proper 'big N '.
3.10 (b) Let $\varepsilon>0$. Note that for all $n \in \mathbb{N}$

$$
\left|1+\frac{(-1)^{n}}{n}-1\right|=\left|\frac{(-1)^{n}}{n}\right|=\frac{1}{n} .
$$

Since $\frac{1}{n}<\varepsilon$, whenever $n>\frac{1}{\varepsilon}$, we choose $N=\frac{1}{\varepsilon}$.
Then, for all $n>N$,

$$
\left|1+\frac{(-1)^{n}}{n}-1\right|=\left|\frac{(-1)^{n}}{n}\right|=\frac{1}{n}<\frac{1}{\frac{1}{\varepsilon}}=\varepsilon .
$$

This proves that $\lim _{n \rightarrow \infty} 1+\frac{(-1)^{n}}{n}=1$.
3.12 (c) Let $\varepsilon>0$. Note that, for all $n \in \mathbb{N}$,

$$
\left|\sqrt{\frac{n+1}{n^{2}}}-0\right|=\sqrt{\frac{1}{n^{2}}(n+1)}=\sqrt{\frac{1}{n}+\frac{1}{n^{2}}} \leq \sqrt{\frac{1}{n}+\frac{1}{n}}<\sqrt{\frac{2}{n}} .
$$

As $\sqrt{\frac{2}{n}}<\varepsilon \Longleftrightarrow \frac{2}{n}<\varepsilon^{2} \Longleftrightarrow n>\frac{2}{\varepsilon^{2}}$, we choose $N=\frac{2}{\varepsilon^{2}}$.
Then, for all $n>N$,

$$
\sqrt{\frac{n+1}{n^{2}}}<\sqrt{\frac{2}{n}}<\varepsilon
$$

This proves that $\lim _{n \rightarrow \infty} \sqrt{\frac{n+1}{n^{2}}}=0$.
3.13 Let $\varepsilon>0$. Note that, for all $n \in \mathbb{N}$,

$$
\left(\frac{2}{3}\right)^{n}=\frac{1}{\left(\frac{3}{2}\right)^{n}}=\frac{1}{\left(1+\frac{1}{2}\right)^{n}} \leq \frac{1}{1+\frac{1}{2} n}<\frac{1}{\frac{1}{2} n}=\frac{2}{n}
$$

Here the first inequality is based on Bernoulli's Inequality:

$$
\left(1+\frac{1}{2}\right)^{n} \geq 1+\frac{1}{2} n
$$

Since $\frac{2}{n}<\varepsilon$ whenever $n>\frac{2}{\varepsilon}$, we choose $N=\frac{2}{\varepsilon}$.
Then, for all $n>N$,

$$
\left|\left(\frac{2}{3}\right)^{n}-0\right|=\left(\frac{2}{3}\right)^{n}=\frac{1}{\left(\frac{3}{2}\right)^{n}}=\frac{1}{\left(1+\frac{1}{2}\right)^{n}} \leq \frac{1}{1+\frac{1}{2} n}<\frac{1}{\frac{1}{2} n}=\frac{2}{n}<\frac{2}{\frac{2}{\varepsilon}}=\varepsilon
$$

This proves that $\lim _{n \rightarrow \infty}\left(\frac{2}{3}\right)^{n}=0$.
3.14 Let $\varepsilon>0$. As $\lim _{n \rightarrow \infty} t_{n}=\ell$, a number N exists such that

$$
\left|t_{n}-\ell\right|<\varepsilon
$$

whenever $n>N$.
As for $n>N$,

$$
\left|t_{n}-\ell\right|<\varepsilon \Longleftrightarrow-\varepsilon<t_{n}-\ell<\varepsilon \Longleftrightarrow-\varepsilon<a_{n}<\varepsilon \Longleftrightarrow\left|a_{n}\right|<\varepsilon
$$

it follows that $\lim _{n \rightarrow \infty} a_{n}=0$.
As for $n>N$,

$$
\begin{aligned}
\left|t_{n}-\ell\right|<\varepsilon & \Longleftrightarrow-\varepsilon<t_{n}-\ell<\varepsilon \Longleftrightarrow 2 \ell-\varepsilon<t_{n}+\ell<2 \ell \varepsilon \Longleftrightarrow 2 \ell-\varepsilon<b_{n}<2 \ell+\varepsilon \\
& \Longleftrightarrow-\varepsilon<b_{n}-2 \ell<\varepsilon \Longleftrightarrow\left|b_{n}-2 \ell\right|<\varepsilon
\end{aligned}
$$

it follows that $\lim _{n \rightarrow \infty} b_{n}=2 \ell$.

