
3.18 The constant sequence 1, 1, 1, . . . is a sequence with positive terms and 1 as the positive limit.

The sequence

(

1

n

)∞

n=1

is a sequence with positive terms and 0 as its limit.

3.19 (a) We give a prove by contradiction.

Suppose that ` > b. Choose ε = `− b. Then for this ε an N exists such that, for all n > N ,

|tn − `| < ε = `− b⇐⇒ −(`− b) < tn − ` < `− b⇐⇒ b < tn < 2`− b.

The first inequality leads to a contradiction.

(b) If I = [a, b], for some a, b ∈ IR, then tn ≥ a for all n ∈ IN. Hence, according to an obvious version of part

(a), ` ≥ a. Similarly, ` ≤ b, that is: ` ∈ I.

The cases I = [a,∞) and I = (−∞, b], where a, b ∈ IR are similar.

3.20 The proof consists of two parts.

(a) If an m > 0 exists such that

|tn| ≤ m,

for all n ∈ IN, then −m ≤ tn ≤ m for all n ∈ IN. Hence, −m is a lower bound of the sequence and m is

an upper bound.

(b) Suppose that the sequence
(

tn
)∞

n=1
is bounded. Then numbers l and u exist such that

l ≤ tn ≤ u,

for al n ∈ IN. According to Exercise 1.11, this implies that for al n ∈ IN,

−|l| ≤ l ≤ tn ≤ u ≤ |u|.

Now choose m = max{|l|, |u|}. Since |u| ≤ max{|l|, |u|} = m and −|l| ≥ −max{|l|, |u|} = −m, we obtain

that, for all n ∈ IN,

−m ≤ −|l| ≤ tn ≤ |u| ≤ m⇐⇒ |tn| ≤ m.

3.22 Assume that lim
n→∞

tn = 0.

Let u ∈ IR. We will show that a k exists such that

1

tk
> u.

We may suppose w.l.o.g. (without loss of generality) that u > 0.

Because lim
n→∞

tn = 0, for ε = 1

u
a number N exists such that

|tn| < ε =
1

u
=⇒ tn < ε =

1

u
,

whenever n > N .

Then for any k > N ,
1

tk
> u. Hence, the sequence

(

tn
)∞

n=1
is unbounded.



3.25 (b) Note that, for all n ∈ IN,

1− n2

2n2 + 1
=

1

n2
− 1

2 +
1

n2

.

Because the sequence
( 1

n

)∞

n=1
converges to 0, Theorem 3 (b) implies that

1

n2
→ 0 as n → ∞. Then,

according to Theorem 3 (a),
1

n2
− 1→ −1 as n→∞ and 2 +

1

n2
→ 2 as n→∞.

Finally, Theorem 3 (c) implies that

1− n2

2n2 + 1
=

1

n2
− 1

2 +
1

n2

→ −1
2

= − 1

2
as n→∞.

3.29 (a) We will prove that lim
n→∞

n2 − 1

n2 + 1
= 1.

Let ε > 0. Note that, for all n ∈ IN,
∣

∣

∣

∣

n2 − 1

n2 + 1
− 1

∣

∣

∣

∣

=
2

n2 + 1
≤ 2

n2
.

Since
2

n2
< ε⇐⇒ n >

√

2

ε
, we choose N =

√

2

ε
. Then, for all n > N ,

∣

∣

∣

∣

n2 − 1

n2 + 1
− 1

∣

∣

∣

∣

=
2

n2 + 1
≤ 2

n2
< ε.

This proves that lim
n→∞

n2 − 1

n2 + 1
= 1.

(b) We will prove that lim
n→∞

√
n+ 1

n
= 0.

Let ε > 0. Note that, for all n ∈ IN,
∣

∣

∣

∣

√
n+ 1

n

∣

∣

∣

∣

=
1√
n
+

1

n
≤ 1√

n
+

1√
n
=

2√
n
.

Since
2√
n
< ε⇐⇒ n >

4

ε2
, we choose N =

4

ε2
. Then, for all n > N ,

∣

∣

∣

∣

√
n+ 1

n

∣

∣

∣

∣

=
1√
n
+

1

n
≤ 2√

n
< ε.

This proves that lim
n→∞

√
n+ 1

n
= 0.

3.30 Note that, for all n ∈ IN,

|yn − `| =
∣

∣

∣
xn +

xn

n
− `
∣

∣

∣
≤ |xn − `|+ |xn|

n
.

Since
(

xn

)∞

n=1
is a convergent sequence, the sequence is bounded. Hence, there exists a u > 0 such that

|xn| ≤ u for all n ∈ IN.

So, for all n ∈ IN,

|yn − `| =
∣

∣

∣
xn +

xn

n
− `
∣

∣

∣
≤ |xn − `|+ |xn|

n
≤ |xn − `|+ u

n
.

Because xn → ` as n→∞, there exists an N1 such that

|xn − `| < 1

2
ε,

whenever n > N1.



Because
u

n
→ 0 as n→∞, there exists an N2 such that

u

n
< 1

2
ε,

whenever n > N2.

Next we choose N = max{N1, N2}. Then for all n > N1

|yn − `| ≤ |xn − `|+ u

n
< 1

2
ε+ 1

2
ε = ε.

3.31 (a) We give a proof by contradiction.

Assume that the sequence
(

an

)∞

n=1
converges, say to ` and that the sequence

(

an+ bn
)∞

n=1
converges, say

to m. Then, according to the arithmetic rules for limits of sequences,

bn = (an + bn)− an → m− ` as n→∞,

which contradicts the fact that the sequence
(

bn
)∞

n=1
is divergent.

(b) The alternating sequence
(

(−1)n
)∞

n=1
is divergent. However,

(−1)n · (−1)n = 1→ 1 as n→∞.

3.36 Observe that

tn =
n2 + 7n+ π

n3 + nπ + ln 7
=

1

n
+

7

n2
+

π

n3

1 +
π

n2
+

ln 7

n3

.

As The sequences
( 1

n

)∞

n=1
,
( 1

n2

)∞

n=1
and

( 1

n3

)∞

n=1
converge to zero, the Arithmetic Rules for limits of

sequences imply that the sequence
(

tn
)∞

n=1
converges to 0

1
= 0.

3.39 For k ∈ IN we introduce the statement P(n): tkn → `k as n→∞.

(1) First we show that the statement P(1) is true: tn → ` as n→∞.

(2) Let m ∈ IN and assume that P(m) is true, that is: tmn → `m as n→∞.

Then for all n,

tm+1
n = tmn · tn.

So according to the Arithmetic Rules for limits of sequences,

lim
n→∞

tm+1
n = lim

n→∞
tmn · lim

n→∞
tn = `m · ` = `m+1.

This proves that P(m+ 1) is true.

According to the Principle of Induction, the statement P(k) is true for all k ∈ IN.


