3.18 The constant sequence 1,1, 1,... is a sequence with positive terms and 1 as the positive limit.
o0

The sequence (—) is a sequence with positive terms and 0 as its limit.
n n=1

3.19 (a) We give a prove by contradiction.
Suppose that £ > b. Choose € = ¢ — b. Then for this € an IV exists such that, for all n > N,

[th =l <e=Ll—-bs= —(L-b)<t,—L<l—b<=b<t,<20—D.

The first inequality leads to a contradiction.
(b) If I = [a, ], for some a,b € IR, then ¢, > a for all n € IN. Hence, according to an obvious version of part
(a), £ > a. Similarly, £ < b, that is: £ € I.

The cases I = [a,00) and I = (—00,b], where a,b € IR are similar.

3.20 The proof consists of two parts.
(a) If an m > 0 exists such that

ltn| < m,

for all n € IN, then —m < t,, < m for all n € IN. Hence, —m is a lower bound of the sequence and m is
an upper bound.

(b) Suppose that the sequence (tn)zo:l is bounded. Then numbers [ and u exist such that

1<ty <u,
for al n € IN. According to Exercise 1.11, this implies that for al n € IN,
- <1<ty <u<l|ul

Now choose m = max{|l|, |u|}. Since |u| < max{|l|,|u|} = m and —|l| > —max{|l|,|u|} = —m, we obtain
that, for all n € IN,

—m < —l] <t, <|ul <m <= |t,| <m.

3.22 Assume that lim ¢, = 0.

n—oo

Let u € IR. We will show that a k exists such that

1
— > u.
tk
We may suppose w.l.o.g. (without loss of generality) that u > 0.

Because lim ¢, =0, for e = % a number N exists such that

n—oo
1 1
[th| <e=—=t, <e=—,
u u

whenever n > N.

1
Then for any k£ > N, . > u. Hence, the sequence (tn)zo_l is unbounded.
B -



3.25 (b) Note that, for all n € IN,

1
1in2iﬁ—1
2 - 1
2n° +1 2+_2
n

1
Because the sequence (7)20_
n/n=

1
, converges to 0, Theorem 3 (b) implies that — — 0 as n — oo. Then,
n

1
according to Theorem 3 (a), — —1— —lasn — oo and 2+ — — 2 as n — oo.
n n

Finally, Theorem 3 (¢) implies that

1
1-n2 20 1
5 = T — 5 — 3 a8 n—ox.
2n 41 24— 2
3.29 (a) We will that lim "ot —1
.29 (a) We will prove that lim —— = 1.
p n~>oon2+1
Let € > 0. Note that, for all n € IN,
n?—1 2 2
== <=
n?+1 n?+1 " n?

2 2 2
Since — <e<+=n> \/7, we choose N = \/7 Then, for all n > N,
n € €

-1 =2 2.
n?+1 21 -n2 °
n?—1
This proves that nlLH;O 1 =1.
1
(b) We will prove that lim vn+ =0.

n— o0 n

Let € > 0. Note that, for all n € IN,
\/ﬁJrl‘ 1 1 1 n 1 2
n

. 2 4
Since — < e <= n > —, we choose N =
€

Jn

1
This proves that lim vn

n— o0 n

=0.

3.30 Note that, for all n € IN,
|y — €| = xn_'_in - < |xn—€|—|—7|xn|.
n n

Since (xn)oo is a convergent sequence, the sequence is bounded. Hence, there exists a u > 0 such that

n=1

|z, | < u for all n € IN.
So, for all n € IN,

x T U
n n n
Because z,, — £ as n — oo, there exists an Ny such that
2, — £ < 3e,

whenever n > Nj.



u .
Because — — 0 as n — oo, there exists an Ny such that
n
u
— < 1e,
n

whenever n > N,.

Next we choose N = max{Ny, No}. Then for all n > Ny
o = O < o — b1+ = < fe+ fe=-.

3.31 (a) We give a proof by contradiction.

Assume that the sequence (an):O:l converges, say to ¢ and that the sequence (an + bn)zo

_, converges, say

to m. Then, according to the arithmetic rules for limits of sequences,
bp = (an +bp) —a, >m—~L as n— oo,

which contradicts the fact that the sequence (bn)zozl is divergent.

(b) The alternating sequence ((—1)"):;1 is divergent. However,

(D" (-H)"=1—1 as n — oo.

3.36 Observe that

1 7 us
N U (L ST et 3
" = M7
n3 4+ nw+1In7 1+12+n_3
n n
1 o0 1 o0 1 o0 . . . .
As The sequences (=), (=), _, and (=), _, converge to zero, the Arithmetic Rules for limits of
n’n= n=’n= n°’ "=

sequences imply that the sequence (tn)zo: converges to % =0.

1

3.39 For k € IN we introduce the statement P(n): tF — /¥ as n — occ.
(1) First we show that the statement P(1) is true: ¢, — £ as n — oo.
(2) Let m € IN and assume that P(m) is true, that is: t]' — {™ as n — oc.
Then for all n,

et = ¢m g

n-.

So according to the Arithmetic Rules for limits of sequences,

lim ¢™* = lim ¢ lim t, = (™ -0 = (™"

n—oo n—oo n—oo

This proves that P(m + 1) is true.
According to the Principle of Induction, the statement P(k) is true for all k¥ € IN.



