3.18 The constant sequence $1,1,1, \ldots$ is a sequence with positive terms and 1 as the positive limit.

The sequence $\left(\frac{1}{n}\right)_{n=1}^{\infty}$ is a sequence with positive terms and 0 as its limit.
3.19 (a) We give a prove by contradiction.

Suppose that $\ell>b$. Choose $\varepsilon=\ell-b$. Then for this ε an N exists such that, for all $n>N$,

$$
\left|t_{n}-\ell\right|<\varepsilon=\ell-b \Longleftrightarrow-(\ell-b)<t_{n}-\ell<\ell-b \Longleftrightarrow b<t_{n}<2 \ell-b .
$$

The first inequality leads to a contradiction.
(b) If $I=[a, b]$, for some $a, b \in \mathbb{R}$, then $t_{n} \geq a$ for all $n \in \mathbb{N}$. Hence, according to an obvious version of part (a), $\ell \geq a$. Similarly, $\ell \leq b$, that is: $\ell \in I$.

The cases $I=[a, \infty)$ and $I=(-\infty, b]$, where $a, b \in \mathbb{R}$ are similar.
3.20 The proof consists of two parts.
(a) If an $m>0$ exists such that

$$
\left|t_{n}\right| \leq m
$$

for all $n \in \mathbb{N}$, then $-m \leq t_{n} \leq m$ for all $n \in \mathbb{N}$. Hence, $-m$ is a lower bound of the sequence and m is an upper bound.
(b) Suppose that the sequence $\left(t_{n}\right)_{n=1}^{\infty}$ is bounded. Then numbers l and u exist such that

$$
l \leq t_{n} \leq u
$$

for al $n \in \mathbb{N}$. According to Exercise 1.11, this implies that for al $n \in \mathbb{N}$,

$$
-|l| \leq l \leq t_{n} \leq u \leq|u| .
$$

Now choose $m=\max \{|l|,|u|\}$. Since $|u| \leq \max \{|l|,|u|\}=m$ and $-|l| \geq-\max \{|l|,|u|\}=-m$, we obtain that, for all $n \in \mathbb{N}$,

$$
-m \leq-|l| \leq t_{n} \leq|u| \leq m \Longleftrightarrow\left|t_{n}\right| \leq m
$$

3.22 Assume that $\lim _{n \rightarrow \infty} t_{n}=0$.

Let $u \in \mathbb{R}$. We will show that a k exists such that

$$
\frac{1}{t_{k}}>u
$$

We may suppose w.l.o.g. (without loss of generality) that $u>0$.
Because $\lim _{n \rightarrow \infty} t_{n}=0$, for $\varepsilon=\frac{1}{u}$ a number N exists such that

$$
\left|t_{n}\right|<\varepsilon=\frac{1}{u} \Longrightarrow t_{n}<\varepsilon=\frac{1}{u}
$$

whenever $n>N$.
Then for any $k>N, \frac{1}{t_{k}}>u$. Hence, the sequence $\left(t_{n}\right)_{n=1}^{\infty}$ is unbounded.
3.25 (b) Note that, for all $n \in \mathbb{N}$,

$$
\frac{1-n^{2}}{2 n^{2}+1}=\frac{\frac{1}{n^{2}}-1}{2+\frac{1}{n^{2}}}
$$

Because the sequence $\left(\frac{1}{n}\right)_{n=1}^{\infty}$ converges to 0 , Theorem $3(\mathrm{~b})$ implies that $\frac{1}{n^{2}} \rightarrow 0$ as $n \rightarrow \infty$. Then, according to Theorem 3 (a), $\frac{1}{n^{2}}-1 \rightarrow-1$ as $n \rightarrow \infty$ and $2+\frac{1}{n^{2}} \rightarrow 2$ as $n \rightarrow \infty$.
Finally, Theorem 3 (c) implies that

$$
\frac{1-n^{2}}{2 n^{2}+1}=\frac{\frac{1}{n^{2}}-1}{2+\frac{1}{n^{2}}} \rightarrow \frac{-1}{2}=-\frac{1}{2} \quad \text { as } n \rightarrow \infty
$$

3.29 (a) We will prove that $\lim _{n \rightarrow \infty} \frac{n^{2}-1}{n^{2}+1}=1$.

Let $\varepsilon>0$. Note that, for all $n \in \mathbb{N}$,

$$
\left|\frac{n^{2}-1}{n^{2}+1}-1\right|=\frac{2}{n^{2}+1} \leq \frac{2}{n^{2}}
$$

Since $\frac{2}{n^{2}}<\varepsilon \Longleftrightarrow n>\sqrt{\frac{2}{\varepsilon}}$, we choose $N=\sqrt{\frac{2}{\varepsilon}}$. Then, for all $n>N$,

$$
\left|\frac{n^{2}-1}{n^{2}+1}-1\right|=\frac{2}{n^{2}+1} \leq \frac{2}{n^{2}}<\varepsilon
$$

This proves that $\lim _{n \rightarrow \infty} \frac{n^{2}-1}{n^{2}+1}=1$.
(b) We will prove that $\lim _{n \rightarrow \infty} \frac{\sqrt{n}+1}{n}=0$.

Let $\varepsilon>0$. Note that, for all $n \in \mathbb{N}$,

$$
\left|\frac{\sqrt{n}+1}{n}\right|=\frac{1}{\sqrt{n}}+\frac{1}{n} \leq \frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}}
$$

Since $\frac{2}{\sqrt{n}}<\varepsilon \Longleftrightarrow n>\frac{4}{\varepsilon^{2}}$, we choose $N=\frac{4}{\varepsilon^{2}}$. Then, for all $n>N$,

$$
\left|\frac{\sqrt{n}+1}{n}\right|=\frac{1}{\sqrt{n}}+\frac{1}{n} \leq \frac{2}{\sqrt{n}}<\varepsilon .
$$

This proves that $\lim _{n \rightarrow \infty} \frac{\sqrt{n}+1}{n}=0$.
3.30 Note that, for all $n \in \mathbb{N}$,

$$
\left|y_{n}-\ell\right|=\left|x_{n}+\frac{x_{n}}{n}-\ell\right| \leq\left|x_{n}-\ell\right|+\frac{\left|x_{n}\right|}{n} .
$$

Since $\left(x_{n}\right)_{n=1}^{\infty}$ is a convergent sequence, the sequence is bounded. Hence, there exists a $u>0$ such that $\left|x_{n}\right| \leq u$ for all $n \in \mathbb{N}$.

So, for all $n \in \mathbb{N}$,

$$
\left|y_{n}-\ell\right|=\left|x_{n}+\frac{x_{n}}{n}-\ell\right| \leq\left|x_{n}-\ell\right|+\frac{\left|x_{n}\right|}{n} \leq\left|x_{n}-\ell\right|+\frac{u}{n} .
$$

Because $x_{n} \rightarrow \ell$ as $n \rightarrow \infty$, there exists an N_{1} such that

$$
\left|x_{n}-\ell\right|<\frac{1}{2} \varepsilon
$$

whenever $n>N_{1}$.

Because $\frac{u}{n} \rightarrow 0$ as $n \rightarrow \infty$, there exists an N_{2} such that

$$
\frac{u}{n}<\frac{1}{2} \varepsilon
$$

whenever $n>N_{2}$.
Next we choose $N=\max \left\{N_{1}, N_{2}\right\}$. Then for all $n>N_{1}$

$$
\left|y_{n}-\ell\right| \leq\left|x_{n}-\ell\right|+\frac{u}{n}<\frac{1}{2} \varepsilon+\frac{1}{2} \varepsilon=\varepsilon .
$$

3.31 (a) We give a proof by contradiction.

Assume that the sequence $\left(a_{n}\right)_{n=1}^{\infty}$ converges, say to ℓ and that the sequence $\left(a_{n}+b_{n}\right)_{n=1}^{\infty}$ converges, say to m. Then, according to the arithmetic rules for limits of sequences,

$$
b_{n}=\left(a_{n}+b_{n}\right)-a_{n} \rightarrow m-\ell \quad \text { as } \quad n \rightarrow \infty
$$

which contradicts the fact that the sequence $\left(b_{n}\right)_{n=1}^{\infty}$ is divergent.
(b) The alternating sequence $\left((-1)^{n}\right)_{n=1}^{\infty}$ is divergent. However,

$$
(-1)^{n} \cdot(-1)^{n}=1 \rightarrow 1 \quad \text { as } \quad n \rightarrow \infty
$$

3.36 Observe that

$$
t_{n}=\frac{n^{2}+7 n+\pi}{n^{3}+n \pi+\ln 7}=\frac{\frac{1}{n}+\frac{7}{n^{2}}+\frac{\pi}{n^{3}}}{1+\frac{\pi}{n^{2}}+\frac{\ln 7}{n^{3}}}
$$

As The sequences $\left(\frac{1}{n}\right)_{n=1}^{\infty},\left(\frac{1}{n^{2}}\right)_{n=1}^{\infty}$ and $\left(\frac{1}{n^{3}}\right)_{n=1}^{\infty}$ converge to zero, the Arithmetic Rules for limits of sequences imply that the sequence $\left(t_{n}\right)_{n=1}^{\infty}$ converges to $\frac{0}{1}=0$.
3.39 For $k \in \mathbb{N}$ we introduce the statement $\mathcal{P}(n): t_{n}^{k} \rightarrow \ell^{k}$ as $n \rightarrow \infty$.
(1) First we show that the statement $\mathcal{P}(1)$ is true: $t_{n} \rightarrow \ell$ as $n \rightarrow \infty$.
(2) Let $m \in \mathbb{N}$ and assume that $\mathcal{P}(m)$ is true, that is: $t_{n}^{m} \rightarrow \ell^{m}$ as $n \rightarrow \infty$.

Then for all n,

$$
t_{n}^{m+1}=t_{n}^{m} \cdot t_{n}
$$

So according to the Arithmetic Rules for limits of sequences,

$$
\lim _{n \rightarrow \infty} t_{n}^{m+1}=\lim _{n \rightarrow \infty} t_{n}^{m} \cdot \lim _{n \rightarrow \infty} t_{n}=\ell^{m} \cdot \ell=\ell^{m+1}
$$

This proves that $\mathcal{P}(m+1)$ is true.
According to the Principle of Induction, the statement $\mathcal{P}(k)$ is true for all $k \in \mathbb{N}$.

