
3.21 (a) Observe that a sequence
(
tn
)
∞

n=1
is not bounded below if any real number l is not a lower bound of the

sequence.

You can prove that a number l is not a lower bound of the sequence by finding a(t least one) term of the

sequence, say tk, which is smaller than l.

Let l ∈ IR. We want to find an n such that tn < l ⇐⇒ 1− n2

n
< l.

Note that, for all n ∈ IN,

tn =
1− n2

n
=

1

n
− n ≤ 1− n.

Since 1− n < l if n > 1− l, we choose a k ∈ IN satisfying k > 1− l. Then for this k

tk =
1− k2

k
=

1

k
− k ≤ 1− k < 1− (1− l) = l.

Alternative

Suppose that the sequence is bounded below, say by l. Then tn ≥ l for all n ∈ IN.

However, if we choose an n ∈ IN satisfying n > 1− l, then

tn =
1− n2

n
=

1

n
− n ≤ 1− n < l.

This is a contradiction. So we may conclude that the sequence is not bounded below.

(b) We prove that the sequence is not bounded above.

Note that, for any natural number n,

n+ 1√
n

=
√
n+

1√
n
>

√
n.

Now let u ∈ IR. Choose a natural number k such that k > u. Then for this k

tk2 =
k2 + 1√

k2
>

√
k2 = k > u.

This proves that u is not an upper bound of the given sequence. As u was arbitrarily chosen the sequence

is unbounded. So she is divergent.

3.23 (a) For n ∈ IN we introduce the statement P(n): an ≥ 2 · 3n−1.

(1) First we show that the statement P(1) is true: a1 = 2 ≥ 2 · 30.
(2) Let k ∈ IN and assume that P(k) is true, that is: ak ≥ 2 · 3k−1.

Then

ak+1 ≥ 3 · ak ≥ 3 · 2 · 3k−1 = 2 · 3k.

This proves that P(k + 1) is true.

According to the Principle of Induction the statement P(n) is true for all n ∈ IN.

(b) We will prove that the sequence
(
an

)
∞

n=1
is not bounded (above).

Let u ∈ IR. According to Bernouilli’s Inequality, for all n,

an ≥ 2 · 3n−1 = 2

3
· 3n = 2

3
(1 + 2)n ≥ 2

3
(1 + 2n) ≥ 1

2
(1 + 2n) = n+ 1

2
≥ n.



So if we choose a k ∈ IN satisfying k > u, then

ak ≥ 2 · 3k−1 ≥ k > u.

Hence the sequence
(
an

)
∞

n=1
is not bounded above.

3.26 First note that for all n

an ≤ tn ≤ bn ⇐⇒ an − ℓ ≤ tn − ℓ ≤ bn − ℓ.

Now we are going to use that fact that an − ℓ and bn − ℓ can be made as small as we please by choosing

n sufficiently large.

Let ε > 0. Then there exist N1, N2 ∈ IR such that

|an − ℓ| < ε, (1)

whenever n > N1, and

|bn − ℓ| < ε, (2)

whenever n > N2.

According to (1), an − ℓ > −ε, whereas (2) implies that bn − ℓ < ε.

Hence, for all n > max{N1, N2},

−ε < an − ℓ ≤ tn − ℓ ≤ bn − ℓ < ε,

which implies that |tn − ℓ| < ε. This proves that lim
n→∞

tn = ℓ.

3.27 (a) If ℓ = 0, then |√tn −
√
ℓ| = √

tn.

Let ε > 0. Because lim
n→∞

tn = 0, there exists an N ∈ IR such that

|tn − 0|
︸ ︷︷ ︸

=tn

< ε2,

whenever n > N . Then, for all n > N ,

∣
∣
√
tn − 0

∣
∣ =

√
tn <

√
ε2 = ε.

This proves that lim
n→∞

√
tn = 0 =

√
ℓ.

(b) If ℓ > 0, then (apply the root method)

|
√
tn −

√
ℓ| =

∣
∣
∣

(√
tn −

√
ℓ
)(√

tn +
√
ℓ
)

(√
tn +

√
ℓ
)

∣
∣
∣ =

|tn − ℓ|
√
tn +

√
ℓ
≤ |tn − ℓ|√

ℓ
=

1√
ℓ
|tn − ℓ| .

Let ε > 0. Because lim
n→∞

tn = ℓ, there exists an N ∈ IR such that

|tn − ℓ| < ε
√
ℓ,

whenever n > N . Then, for all n > N ,

|
√
tn −

√
ℓ| = 1√

ℓ
|tn − ℓ| < 1√

ℓ
· ε
√
ℓ = ε.

This proves that lim
n→∞

√
tn =

√
ℓ.



3.28 According to the arithmetic rules for limits of sequences, t2
n
→ ℓ2 as n → ∞.

Then, in view of Exercise 27,
√

t2n →
√
ℓ2 as n → ∞. This means that |tn| → |ℓ| as n → ∞.

Alternative proof by using the definition.

Let ε > 0. Because lim
n→∞

tn = ℓ, there exists an N ∈ IR such that |tn − ℓ| < ε for all n > N .

Then, according to the Reverse Triangle Inequality, for all n > N ,

∣
∣|tn| − |ℓ|

∣
∣ ≤ |tn − ℓ| < ε.

This proves that lim
n→∞

|tn| = |ℓ|.

3.29 (c) We will prove that lim
n→∞

n+ 1

n
√
n

= 0.

Let ε > 0. Note that, for all n ∈ IN,

∣
∣
∣
∣

n+ 1

n
√
n

∣
∣
∣
∣
=

1√
n
+

1

n
√
n
≤ 1√

n
+

1√
n
=

2√
n
.

Since
2√
n
< ε ⇐⇒ n >

4

ε2
, we choose N =

4

ε2
. Then, for all n > N ,

∣
∣
∣
∣

n+ 1

n
√
n

∣
∣
∣
∣
=

1√
n
+

1

n
√
n
≤ 2√

n
< ε.

This proves that lim
n→∞

n+ 1

n
√
n

= 0.

3.37 We will prove that the sequence
(
lnxn

)
∞

n=1
is unbounded. So let u > 0.

As

lnxn < −u ⇐⇒ xn < e−u,

we choose ε = e−u. As lim
n→∞

xn = 0, an N exists such that

|xn| < ε = e−u,

whenever n > N . Then for n > N ,

|xn| < e−u ⇐⇒ −e−u < xn < e−u.

Hence, for n > N , lnxn < −u.

As the sequence
(
lnxn

)
∞

n=1
is unbounded, ist is divergent.

3.38 Observe that for all n,

1− cosxn

n
≥ 1− 1

n
.

So if
2n2

n2 + π

[

1− 1

n

]

≥ 1.99, then the value of Babs’ investment is at least 1.99α Euro.



Now

2n2

n2 + π

[

1− 1

n

]

> 1.99 ⇐⇒ 2n2

n2 + π

n− 1

n
≥ 1.99

⇐⇒ 2n(n− 1) ≥ 1.99(n2 + π)

⇐⇒ 2n2 − 2n− 1.99n2 − 1.99π ≥ 0

⇐⇒ 0.01n2 − 2n− 1.99π ≥ 0

⇐⇒ n2 − 200n− 199π ≥ 0

⇐= n ≥ 200 +
√
2002 − 4×−199π

2
= 100 +

√
10 000 + 199π ≈ 203.08.

So after 204 months her investment almost doubled.


