3.21 (a) Observe that a sequence $\left(t_{n}\right)_{n=1}^{\infty}$ is not bounded below if any real number l is not a lower bound of the sequence.

You can prove that a number l is not a lower bound of the sequence by finding a(t least one) term of the sequence, say t_{k}, which is smaller than l.
Let $l \in \mathbb{R}$. We want to find an n such that $t_{n}<l \Longleftrightarrow \frac{1-n^{2}}{n}<l$.
Note that, for all $n \in \mathbb{N}$,

$$
t_{n}=\frac{1-n^{2}}{n}=\frac{1}{n}-n \leq 1-n
$$

Since $1-n<l$ if $n>1-l$, we choose a $k \in \mathbb{N}$ satisfying $k>1-l$. Then for this k

$$
t_{k}=\frac{1-k^{2}}{k}=\frac{1}{k}-k \leq 1-k<1-(1-l)=l
$$

Alternative

Suppose that the sequence is bounded below, say by l. Then $t_{n} \geq l$ for all $n \in \mathbb{N}$.
However, if we choose an $n \in \mathbb{N}$ satisfying $n>1-l$, then

$$
t_{n}=\frac{1-n^{2}}{n}=\frac{1}{n}-n \leq 1-n<l .
$$

This is a contradiction. So we may conclude that the sequence is not bounded below.
(b) We prove that the sequence is not bounded above.

Note that, for any natural number n,

$$
\frac{n+1}{\sqrt{n}}=\sqrt{n}+\frac{1}{\sqrt{n}}>\sqrt{n} .
$$

Now let $u \in \mathbb{R}$. Choose a natural number k such that $k>u$. Then for this k

$$
t_{k^{2}}=\frac{k^{2}+1}{\sqrt{k^{2}}}>\sqrt{k^{2}}=k>u
$$

This proves that u is not an upper bound of the given sequence. As u was arbitrarily chosen the sequence is unbounded. So she is divergent.
3.23 (a) For $n \in \mathbb{N}$ we introduce the statement $\mathcal{P}(n): a_{n} \geq 2 \cdot 3^{n-1}$.
(1) First we show that the statement $\mathcal{P}(1)$ is true: $a_{1}=2 \geq 2 \cdot 3^{0}$.
(2) Let $k \in \mathbb{N}$ and assume that $\mathcal{P}(k)$ is true, that is: $a_{k} \geq 2 \cdot 3^{k-1}$.

Then

$$
a_{k+1} \geq 3 \cdot a_{k} \geq 3 \cdot 2 \cdot 3^{k-1}=2 \cdot 3^{k}
$$

This proves that $\mathcal{P}(k+1)$ is true.
According to the Principle of Induction the statement $\mathcal{P}(n)$ is true for all $n \in \mathbb{N}$.
(b) We will prove that the sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is not bounded (above).

Let $u \in \mathbb{R}$. According to Bernouilli's Inequality, for all n,

$$
a_{n} \geq 2 \cdot 3^{n-1}=\frac{2}{3} \cdot 3^{n}=\frac{2}{3}(1+2)^{n} \geq \frac{2}{3}(1+2 n) \geq \frac{1}{2}(1+2 n)=n+\frac{1}{2} \geq n .
$$

So if we choose a $k \in \mathbb{N}$ satisfying $k>u$, then

$$
a_{k} \geq 2 \cdot 3^{k-1} \geq k>u
$$

Hence the sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is not bounded above.
3.26 First note that for all n

$$
a_{n} \leq t_{n} \leq b_{n} \Longleftrightarrow a_{n}-\ell \leq t_{n}-\ell \leq b_{n}-\ell
$$

Now we are going to use that fact that $a_{n}-\ell$ and $b_{n}-\ell$ can be made as small as we please by choosing n sufficiently large.

Let $\varepsilon>0$. Then there exist $N_{1}, N_{2} \in \mathbb{R}$ such that

$$
\begin{equation*}
\left|a_{n}-\ell\right|<\varepsilon, \tag{1}
\end{equation*}
$$

whenever $n>N_{1}$, and

$$
\begin{equation*}
\left|b_{n}-\ell\right|<\varepsilon, \tag{2}
\end{equation*}
$$

whenever $n>N_{2}$.
According to (1), $a_{n}-\ell>-\varepsilon$, whereas (2) implies that $b_{n}-\ell<\varepsilon$.
Hence, for all $n>\max \left\{N_{1}, N_{2}\right\}$,

$$
-\varepsilon<a_{n}-\ell \leq t_{n}-\ell \leq b_{n}-\ell<\varepsilon,
$$

which implies that $\left|t_{n}-\ell\right|<\varepsilon$. This proves that $\lim _{n \rightarrow \infty} t_{n}=\ell$.
3.27 (a) If $\ell=0$, then $\left|\sqrt{t_{n}}-\sqrt{\ell}\right|=\sqrt{t_{n}}$.

Let $\varepsilon>0$. Because $\lim _{n \rightarrow \infty} t_{n}=0$, there exists an $N \in \mathbb{R}$ such that

$$
\underbrace{\left|t_{n}-0\right|}_{=t_{n}}<\varepsilon^{2},
$$

whenever $n>N$. Then, for all $n>N$,

$$
\left|\sqrt{t_{n}}-0\right|=\sqrt{t_{n}}<\sqrt{\varepsilon^{2}}=\varepsilon
$$

This proves that $\lim _{n \rightarrow \infty} \sqrt{t_{n}}=0=\sqrt{\ell}$.
(b) If $\ell>0$, then (apply the root method)

$$
\left|\sqrt{t_{n}}-\sqrt{\ell}\right|=\left|\frac{\left(\sqrt{t_{n}}-\sqrt{\ell}\right)\left(\sqrt{t_{n}}+\sqrt{\ell}\right)}{\left(\sqrt{t_{n}}+\sqrt{\ell}\right)}\right|=\frac{\left|t_{n}-\ell\right|}{\sqrt{t_{n}}+\sqrt{\ell}} \leq \frac{\left|t_{n}-\ell\right|}{\sqrt{\ell}}=\frac{1}{\sqrt{\ell}}\left|t_{n}-\ell\right| .
$$

Let $\varepsilon>0$. Because $\lim _{n \rightarrow \infty} t_{n}=\ell$, there exists an $N \in \mathbb{R}$ such that

$$
\left|t_{n}-\ell\right|<\varepsilon \sqrt{\ell}
$$

whenever $n>N$. Then, for all $n>N$,

$$
\left|\sqrt{t_{n}}-\sqrt{\ell}\right|=\frac{1}{\sqrt{\ell}}\left|t_{n}-\ell\right|<\frac{1}{\sqrt{\ell}} \cdot \varepsilon \sqrt{\ell}=\varepsilon
$$

This proves that $\lim _{n \rightarrow \infty} \sqrt{t_{n}}=\sqrt{\ell}$.
3.28 According to the arithmetic rules for limits of sequences, $t_{n}^{2} \rightarrow \ell^{2}$ as $n \rightarrow \infty$.

Then, in view of Exercise 27, $\sqrt{t_{n}^{2}} \rightarrow \sqrt{\ell^{2}}$ as $n \rightarrow \infty$. This means that $\left|t_{n}\right| \rightarrow|\ell|$ as $n \rightarrow \infty$.
Alternative proof by using the definition.
Let $\varepsilon>0$. Because $\lim _{n \rightarrow \infty} t_{n}=\ell$, there exists an $N \in \mathbb{R}$ such that $\left|t_{n}-\ell\right|<\varepsilon$ for all $n>N$.
Then, according to the Reverse Triangle Inequality, for all $n>N$,

$$
\left|\left|t_{n}\right|-|\ell|\right| \leq\left|t_{n}-\ell\right|<\varepsilon .
$$

This proves that $\lim _{n \rightarrow \infty}\left|t_{n}\right|=|\ell|$.
3.29 (c) We will prove that $\lim _{n \rightarrow \infty} \frac{n+1}{n \sqrt{n}}=0$.

Let $\varepsilon>0$. Note that, for all $n \in \mathbb{N}$,

$$
\left|\frac{n+1}{n \sqrt{n}}\right|=\frac{1}{\sqrt{n}}+\frac{1}{n \sqrt{n}} \leq \frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}} .
$$

Since $\frac{2}{\sqrt{n}}<\varepsilon \Longleftrightarrow n>\frac{4}{\varepsilon^{2}}$, we choose $N=\frac{4}{\varepsilon^{2}}$. Then, for all $n>N$,

$$
\left|\frac{n+1}{n \sqrt{n}}\right|=\frac{1}{\sqrt{n}}+\frac{1}{n \sqrt{n}} \leq \frac{2}{\sqrt{n}}<\varepsilon
$$

This proves that $\lim _{n \rightarrow \infty} \frac{n+1}{n \sqrt{n}}=0$.
3.37 We will prove that the sequence $\left(\ln x_{n}\right)_{n=1}^{\infty}$ is unbounded. So let $u>0$.

As

$$
\ln x_{n}<-u \Longleftrightarrow x_{n}<\mathrm{e}^{-u}
$$

we choose $\varepsilon=\mathrm{e}^{-u}$. As $\lim _{n \rightarrow \infty} x_{n}=0$, an N exists such that

$$
\left|x_{n}\right|<\varepsilon=\mathrm{e}^{-u}
$$

whenever $n>N$. Then for $n>N$,

$$
\left|x_{n}\right|<\mathrm{e}^{-u} \Longleftrightarrow-\mathrm{e}^{-u}<x_{n}<\mathrm{e}^{-u} .
$$

Hence, for $n>N, \ln x_{n}<-u$.
As the sequence $\left(\ln x_{n}\right)_{n=1}^{\infty}$ is unbounded, ist is divergent.
3.38 Observe that for all n,

$$
1-\frac{\cos x_{n}}{n} \geq 1-\frac{1}{n}
$$

So if $\frac{2 n^{2}}{n^{2}+\pi}\left[1-\frac{1}{n}\right] \geq 1.99$, then the value of Babs' investment is at least 1.99α Euro.

Now

$$
\begin{aligned}
\frac{2 n^{2}}{n^{2}+\pi}\left[1-\frac{1}{n}\right]>1.99 & \Longleftrightarrow \frac{2 n^{2}}{n^{2}+\pi} \frac{n-1}{n} \geq 1.99 \\
& \Longleftrightarrow 2 n(n-1) \geq 1.99\left(n^{2}+\pi\right) \\
& \Longleftrightarrow 2 n^{2}-2 n-1.99 n^{2}-1.99 \pi \geq 0 \\
& \Longleftrightarrow 0.01 n^{2}-2 n-1.99 \pi \geq 0 \\
& \Longleftrightarrow n^{2}-200 n-199 \pi \geq 0 \\
& \Longleftrightarrow n \geq \frac{200+\sqrt{200^{2}-4 \times-199 \pi}}{2}=100+\sqrt{10000+199 \pi} \approx 203.08
\end{aligned}
$$

So after 204 months her investment almost doubled.

