- 4.1 For any $n \in \mathbb{N}$, $r^{n+1} = \underbrace{r}_{>1} \cdot \underbrace{r^n}_{>0} > r^n$. So the sequence $(r^n)_{n=1}^{\infty}$ is increasing if r > 1.
- 4.2 (a) Since all terms of the sequence $(b_n)_{n=1}^{\infty}$ are positive, the sequence is bounded below by 0. According to Example 2, this sequence is decreasing. Hence, by the Monotone Sequence Property, the sequence converges.
 - (b) For $n \in \mathbb{N}, n \ge 6$ we introduce the statement $\mathcal{P}(n)$: $\frac{2^n}{n!} < \frac{1}{n}$.
 - (1) First we show that the statement $\mathcal{P}(6)$ is true: $\frac{2^6}{6!} = \frac{4}{45} = \frac{8}{90} < \frac{15}{90} = \frac{1}{6}$.
 - (2) Let $k \in \mathbb{N}, k \ge 6$.

Assume that $\mathcal{P}(k)$ is true, that is: $\frac{2^k}{k!} < \frac{1}{k}$. Then

$$\frac{2^{k+1}}{(k+1)!} = \frac{2}{k+1} \cdot \frac{2^k}{k!} < \frac{2}{k+1} \cdot \frac{1}{k} = \underbrace{\frac{2}{k}}_{<\frac{1}{k}} \frac{1}{k+1} < \frac{1}{k+1}$$

This proves that $\mathcal{P}(k+1)$ is true.

According to the Principle of Induction, the statement $\mathcal{P}(n)$ is true for all $n \in \mathbb{N}, n \geq 6$.

(c) Since for all natural numbers $n \ge 6$

$$0 < b_n < \frac{1}{n}$$

and $\lim_{n\to\infty} \frac{1}{n} = 0$, the Sandwich Lemma implies that the sequence $(b_n)_{n=6}^{\infty}$ converges to 0. So $\lim_{n\to\infty} b_n = 0$.

- 4.3 (a) For $n \in \mathbb{N}$ we introduce the statement $\mathcal{P}(n)$: $t_n > \sqrt{2}$.
 - (1) First we show that the statement $\mathcal{P}(1)$ is true: $t_1 = 4 > \sqrt{2}$.
 - (2) Let $k \in \mathbb{N}$ and assume that $\mathcal{P}(k)$ is true, that is: $t_k > \sqrt{2}$. Then

$$t_{k+1} - \sqrt{2} = \frac{1}{2} \left(t_k + \frac{2}{t_k} \right) - \sqrt{2} = \frac{t_k^2 + 2 - 2t_k \sqrt{2}}{2t_k} = \frac{\left(t_k - \sqrt{2} \right)^2}{2t_k} > 0.$$

Here we used the fact that $t_k > \sqrt{2} > 0$.

This proves that $\mathcal{P}(k+1)$ is true.

According to the Principle of Induction, the statement $\mathcal{P}(n)$ is true for all $n \in \mathbb{N}$.

(b) Let $n \in \mathbb{N}$. Then

$$t_{n+1} - t_n = \frac{1}{2} \left(t_n + \frac{2}{t_n} \right) - t_n = \frac{1}{t_n} - \frac{1}{2} t_n = \frac{2 - t_n^2}{2t_n} < 0,$$

where the inequality is a consequence of part (a).

Hence, the sequence is decreasing.

(c) Since the sequence $(t_n)_{n=1}^{\infty}$ is decreasing and bounded below, the Monotone Sequence Property implies that the sequence converges, say to ℓ . Then $\lim_{n\to\infty} t_{n+1} = \ell$ and $\ell \ge \sqrt{2}$ (because all the terms of the sequence are larger than $\sqrt{2}$). Hence, according to the Arithmetic Rules for limits of sequences,

$$\ell = \lim_{n \to \infty} t_{n+1} = \frac{1}{2} \left(\lim_{n \to \infty} t_n + \frac{2}{\lim_{n \to \infty} t_n} \right) = \frac{1}{2} \left(\ell + \frac{2}{\ell} \right)$$

So $\ell^2 = 2$, which implies that $\ell = \sqrt{2} \ (\ell = -\sqrt{2} \text{ is impossible, because we know that } \ell \ge \sqrt{2}!)$.

4.5 (a) For $n \in \mathbb{N}$

$$b_{n+1} = \left(1 + \frac{1}{n}\right)^{n+1} = \left(1 + \frac{1}{n}\right)^n \left(1 + \frac{1}{n}\right) = \left(1 + \frac{1}{n}\right)a_n$$

- (b) In view of part (a), the sequence $(b_n)_{n=2}^{\infty}$ is the product of the convergent sequences $(a_n)_{n=2}^{\infty}$ and $\left(1+\frac{1}{n}\right)_{n=2}^{\infty}$. According to the Arithmetic Rules for limits of sequences, the limit of the sequence $(b_n)_{n=2}^{\infty}$ is equal to e.
- 4.7 (a) The sequence t_5, t_7, t_9, \ldots can be written in the form $(t_{2k+3})_{k=1}^{\infty}$.
 - (b) The sequence $t_2, t_4, t_8, t_{16}, \ldots$ can be written in the form $(t_{2^k})_{k=1}^{\infty}$.
 - 4.8 Note that we are dealing with a subsequence of the sequence $(t_n)_{n=1}^{\infty}$, where

$$t_n = \frac{1}{\sqrt{n}}$$
 $(n \in \mathbb{N}).$

Since for $k \in \mathbb{N}$, $t_{k^2} = \frac{1}{\sqrt{k^2}} = \frac{1}{k}$, the sequence $1, \frac{1}{2}, \frac{1}{3}, \dots$ is in fact the subsequence $(t_{k^2})_{k=1}^{\infty}$.

- 4.9 (a) The subsequence consisting of the terms with the numbers 1, 3, 6, 10, 15, ... is a constant sequence: all terms are equal to 1 (take $n_k = \frac{1}{2}k(k+1)$ in the definition of subsequence). Hence, this subsequence converges to 1.
 - (b) The subsequence consisting of the terms with the numbers 2, 4, 7, 11, 11, ... is the sequence $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots$ (take $n_k = 1 + \frac{1}{2}k(k+1)$ in the definition of subsequence). This subsequence converges to 0. So the given sequence has two convergent subsequences with different limits. Hence the given sequence is divergent.
- 4.11 (a) Note that

$$t_n = n + (-1)^n n = \begin{cases} 2n & \text{if } n \text{ is even} \\ 0 & \text{if } n \text{ is odd.} \end{cases}$$

Hence, the subsequence $(t_{2n-1})_{n=1}^{\infty}$ converges to 0.

(b) According to part (a), the subsequence $(t_{2n})_{n=1}^{\infty}$ is in fact the increasing sequence

$$4, 8, 12, 16, \ldots$$

Obviously, the subsequence $(t_{4n})_{n=1}^{\infty}$ is a subsequence of the foregoing one. Hence, this subsequence is increasing too.

4.14 Let $\varepsilon > 0$. Then an N_1 exists such that

$$|a_{2n} - \ell| < \varepsilon,$$

whenever $2n > N_1$. Likewise, an N_2 exists such that

 $|a_{2n-1} - \ell| < \varepsilon,$

whenever $2n - 1 > N_2$.

We choose $N = \max \{N_1, N_2\}$. Then, for all k > N,

$$|a_k - \ell| < \varepsilon.$$

This can be explained as follows:

- if k is even, then k can be written as k = 2n for some $n \in \mathbb{N}$; because $2n > N \ge N_1$, it follows that

$$|a_k - l| = |a_{2n} - \ell| < \varepsilon;$$

- if k is odd, then k can be written as k = 2n - 1 for some $n \in \mathbb{N}$; because $2n - 1 > N \ge N_2$, it follows that

$$|a_k - l| = |a_{2n-1} - \ell| < \varepsilon.$$

Hence, $\lim_{n \to \infty} a_n = \ell$.