
4.1 For any n ∈ IN, rn+1 = r
︸︷︷︸

>1

· rn

︸︷︷︸

>0

> rn. So the sequence
(
rn
)∞

n=1
is increasing if r > 1.

4.2 (a) Since all terms of the sequence
(
bn

)∞

n=1
are positive, the sequence is bounded below by 0. According

to Example 2, this sequence is decreasing. Hence, by the Monotone Sequence Property, the sequence

converges.

(b) For n ∈ IN, n ≥ 6 we introduce the statement P(n): 2n

n!
<

1

n
.

(1) First we show that the statement P(6) is true: 26

6!
=

4

45
=

8

90
<

15

90
=

1

6
.

(2) Let k ∈ IN, k ≥ 6.

Assume that P(k) is true, that is: 2k

k!
<

1

k
.

Then
2k+1

(k + 1)!
=

2

k + 1
· 2

k

k!
<

2

k + 1
· 1
k
=

2

k
︸︷︷︸

≤ 1

3

1

k + 1
<

1

k + 1
.

This proves that P(k + 1) is true.

According to the Principle of Induction, the statement P(n) is true for all n ∈ IN, n ≥ 6.

(c) Since for all natural numbers n ≥ 6

0 < bn <
1

n

and lim
n→∞

1

n
= 0, the Sandwich Lemma implies that the sequence

(
bn

)∞

n=6
converges to 0. So lim

n→∞
bn = 0.

4.3 (a) For n ∈ IN we introduce the statement P(n): tn >
√
2.

(1) First we show that the statement P(1) is true: t1 = 4 >
√
2.

(2) Let k ∈ IN and assume that P(k) is true, that is: tk >
√
2.

Then

tk+1 −
√
2 = 1

2

(
tk +

2

tk

)
−
√
2 =

t2k + 2− 2tk
√
2

2tk
=

(
tk −

√
2
)2

2tk
> 0.

Here we used the fact that tk >
√
2 > 0.

This proves that P(k + 1) is true.

According to the Principle of Induction, the statement P(n) is true for all n ∈ IN.

(b) Let n ∈ IN. Then

tn+1 − tn = 1
2

(
tn +

2

tn

)
− tn =

1

tn
− 1

2
tn =

2− t2n
2tn

< 0,

where the inequality is a consequence of part (a).

Hence, the sequence is decreasing.

(c) Since the sequence
(
tn
)∞

n=1
is decreasing and bounded below, the Monotone Sequence Property implies

that the sequence converges, say to `. Then lim
n→∞

tn+1 = ` and ` ≥
√
2 (because all the terms of the

sequence are larger than
√
2). Hence, according to the Arithmetic Rules for limits of sequences,

` = lim
n→∞

tn+1 =
1
2

(
lim

n→∞
tn +

2

lim
n→∞

tn

)
= 1

2

(
` +

2

`

)
.

So `2 = 2, which implies that ` =
√
2 (` = −

√
2 is impossible, because we know that ` ≥

√
2!).



4.5 (a) For n ∈ IN

bn+1 =
(

1 +
1

n

)n+1

=
(

1 +
1

n

)n(

1 +
1

n

)

=
(

1 +
1

n

)

an.

(b) In view of part (a), the sequence
(
bn

)∞

n=2
is the product of the convergent sequences

(
an

)∞

n=2
and

(

1+
1

n

)∞

n=2
. According to the Arithmetic Rules for limits of sequences, the limit of the sequence

(
bn

)∞

n=2

is equal to e.

4.7 (a) The sequence t5, t7, t9, . . . can be written in the form
(
t2k+3

)∞

k=1
.

(b) The sequence t2, t4, t8, t16, . . . can be written in the form
(
t2k

)∞

k=1
.

4.8 Note that we are dealing with a subsequence of the sequence
(
tn
)∞

n=1
, where

tn =
1√
n

(n ∈ IN).

Since for k ∈ IN, tk2 =
1√
k2

=
1

k
, the sequence 1, 1

2
, 1

3
, . . . is in fact the subsequence

(
tk2

)∞

k=1
.

4.9 (a) The subsequence consisting of the terms with the numbers 1, 3, 6, 10, 15, . . . is a constant sequence: all

terms are equal to 1 (take nk = 1
2
k(k + 1) in the definition of subsequence). Hence, this subsequence

converges to 1.

(b) The subsequence consisting of the terms with the numbers 2, 4, 7, 11, 11, . . . is the sequence 1
2
, 1

3
, 1

4
, 1

5
, . . .

(take nk = 1+ 1
2
k(k+1) in the definition of subsequence). This subsequence converges to 0. So the given

sequence has two convergent subsequences with different limits. Hence the given sequence is divergent.

4.11 (a) Note that

tn = n + (−1)nn =

{
2n if n is even

0 if n is odd.

Hence, the subsequence
(
t2n−1

)∞

n=1
converges to 0.

(b) According to part (a), the subsequence
(
t2n

)∞

n=1
is in fact the increasing sequence

4, 8, 12, 16, . . .

Obviously, the subsequence
(
t4n

)∞

n=1
is a subsequence of the foregoing one. Hence, this subsequence is

increasing too.

4.14 Let ε > 0. Then an N1 exists such that

|a2n − `| < ε,

whenever 2n > N1. Likewise, an N2 exists such that

|a2n−1 − `| < ε,

whenever 2n− 1 > N2.



We choose N = max {N1, N2}. Then, for all k > N ,

|ak − `| < ε.

This can be explained as follows:

– if k is even, then k can be written as k = 2n for some n ∈ IN; because 2n > N ≥ N1, it follows that

|ak − l| = |a2n − `| < ε;

– if k is odd, then k can be written as k = 2n− 1 for some n ∈ IN; because 2n− 1 > N ≥ N2, it follows

that

|ak − l| = |a2n−1 − `| < ε.

Hence, lim
n→∞

an = `.


