3.34 We give a proof by contradiction. So assume that $\ell \neq \ell^{\prime}$.

Let $\varepsilon=\left|\ell-\ell^{\prime}\right|$.
As $\lim _{n \rightarrow \infty} t_{n}=\ell$, there exist an N such that

$$
\left|t_{n}-\ell\right|<\frac{1}{2} \varepsilon
$$

whenever $n>N$. Similarly, as $\lim _{n \rightarrow \infty} t_{n}=\ell^{\prime}$, there exist an N^{\prime} such that

$$
\left|t_{n}-\ell^{\prime}\right|<\frac{1}{2} \varepsilon
$$

whenever $n>N^{\prime}$.
Hence, for any $n>\max \left\{N, N^{\prime}\right\}$, the Triangle Inequality implies that

$$
\varepsilon=\left|\ell-\ell^{\prime}\right|=\left|\ell-t_{n}+t_{n}-\ell^{\prime}\right| \leq\left|\ell-t_{n}\right|+\left|t_{n}-\ell^{\prime}\right|<\frac{1}{2} \varepsilon+\frac{1}{2} \varepsilon=\varepsilon
$$

which is impossible.
3.37 We will prove that the sequence $\left(\ln x_{n}\right)_{n=1}^{\infty}$ is unbounded. So let $u>0$.

As

$$
\ln x_{n}<-u \Longleftrightarrow x_{n}<\mathrm{e}^{-u}
$$

we choose $\varepsilon=\mathrm{e}^{-u}$. As $\lim _{n \rightarrow \infty} x_{n}=0$, an N exists such that

$$
\left|x_{n}\right|<\varepsilon=\mathrm{e}^{-u}
$$

whenever $n>N$. Then for $n>N$,

$$
\left|x_{n}\right|<\mathrm{e}^{-u} \Longleftrightarrow-\mathrm{e}^{-u}<x_{n}<\mathrm{e}^{-u} .
$$

Hence, for $n>N, \ln x_{n}<-u$.
As the sequence $\left(\ln x_{n}\right)_{n=1}^{\infty}$ is unbounded, it is divergent.
4.4 Note that for $n>1$

$$
\begin{aligned}
\frac{a_{n}}{a_{n-1}} & =\frac{\left(1+\frac{1}{n}\right)^{n}}{\left(1+\frac{1}{n-1}\right)^{n-1}}=\left(\frac{1+\frac{1}{n}}{1+\frac{1}{n-1}}\right)^{n}\left(1+\frac{1}{n-1}\right)=\left(\frac{(n+1)(n-1)}{n^{2}}\right)^{n} \cdot \frac{n}{n-1} \\
& =\left(1-\frac{1}{n^{2}}\right)^{n} \cdot \frac{n}{n-1} \underset{\substack{\text { Bernoulli's } \\
\text { Inequality }}}{\geq}\left(1-n \cdot \frac{1}{n^{2}}\right) \cdot \frac{n}{n-1}=\frac{n-1}{n} \cdot \frac{n}{n-1}=1 .
\end{aligned}
$$

As the terms of the sequence are positive, this implies that the sequence is increasing.
4.6 (a) For any $n \in \mathbb{N}$,

$$
1+\frac{2}{n}=\frac{n+2}{n}=\frac{n+1}{n} \frac{n+2}{n+1}=\left(1+\frac{1}{n}\right)\left(1+\frac{1}{n+1}\right)
$$

(b) According to part (a), for any n,

$$
\begin{aligned}
\left(1+\frac{2}{n}\right)^{n} & =\left(1+\frac{1}{n}\right)^{n}\left(1+\frac{1}{n+1}\right)^{n}=\left(1+\frac{1}{n}\right)^{n} \frac{\left(1+\frac{1}{n+1}\right)^{n+1}}{1+\frac{1}{n+1}} \\
& =\left(1+\frac{1}{n}\right)^{n}\left(1+\frac{1}{n+1}\right)^{n+1} \frac{n+1}{n+2}
\end{aligned}
$$

As the limits of the first two factors of this expression are both equal to e and the limit of the third factor is 1 , the Product Rule for limits of sequences implies that the limit of the expression is equal to e^{2}.
4.10 Assume that $\lim _{n \rightarrow \infty}(-1)^{n} b_{n}=\ell$.

Then, according to Theorem 2,

$$
\ell=\lim _{k \rightarrow \infty}(-1)^{2 k} b_{2 k}=\lim _{k \rightarrow \infty} \underbrace{b_{2 k}}_{\geq 0} \underset{\text { Theorem 3.1 }}{\geq} 0
$$

Similarly,

$$
\ell=\lim _{k \rightarrow \infty}(-1)^{2 k-1} b_{2 k-1}=-\lim _{k \rightarrow \infty} b_{2 k-1} \leq 0
$$

So $\ell=0$. Now, according to Exercise 3.28, the sequence $\left(b_{n}\right)_{n=1}^{\infty}=\left(\left|(-1)^{n} b_{n}\right|\right)_{n=1}^{\infty}$ converges to $|\ell|=0$.
4.12 (a) For $n \in \mathbb{N}$ we introduce the statement $\mathcal{P}(n): 2 \leq t_{n} \leq 3$.
(1) First we show that the statement $\mathcal{P}(1)$ is true: $2 \leq 2 \leq 3$.
(2) Let $k \in \mathbb{N}$ and assume that $\mathcal{P}(k)$ is true, that is: $2 \leq t_{k} \leq 3$.

Then

$$
7 \leq 3+2 t_{k} \leq 9 \Longrightarrow 2<\sqrt{7} \leq \sqrt{3+2 t_{k}} \leq \sqrt{9}=3 \Longrightarrow 2<t_{k+1} \leq 3
$$

This proves that $\mathcal{P}(k+1)$ is true.
According to the Principle of Induction, the statement $\mathcal{P}(n)$ is true for all $n \in \mathbb{N}$.
(b) Let $n \in \mathbb{N}$. Then the fact that $2 \leq t_{n} \leq 3$ implies that

$$
\begin{aligned}
t_{n+1}-t_{n} & =\sqrt{3+2 t_{n}}-t_{n}=\frac{\left[\sqrt{3+2 t_{n}}-t_{n}\right]\left[\sqrt{3+2 t_{n}}+t_{n}\right]}{\sqrt{3+2 t_{n}}+t_{n}}=\frac{3+2 t_{n}-t_{n}^{2}}{\sqrt{3+2 t_{n}}+t_{n}} \\
& =\frac{-\left(t_{n}-3\right)\left(t_{n}+1\right)}{\sqrt{3+2 t_{n}}+t_{n}} \geq 0
\end{aligned}
$$

Hence, the sequence $\left(t_{n}\right)_{n=1}^{\infty}$ is increasing.

Alternative:

As t_{n} and t_{n+1} are both positive,

$$
\begin{aligned}
t_{n+1} \geq t_{n} & \Longleftrightarrow t_{n+1}^{2} \geq t_{n}^{2} \Longleftrightarrow 3+2 t_{n} \geq t_{n}^{2} \Longleftrightarrow t_{n}^{2}-2 t_{n}-3 \leq 0 \Longleftrightarrow\left(t_{n}-3\right)\left(t_{n}+1\right) \leq 0 \\
& \Longleftrightarrow-1 \leq t_{n} \leq 3
\end{aligned}
$$

So, according to part (a), the sequence $\left(t_{n}\right)_{n=1}^{\infty}$ is increasing.
(c) Because the sequence is increasing and bounded above (by 3), the Monotone Sequence Property implies the convergence of the sequence $\left(t_{n}\right)_{n=1}^{\infty}$. Let ℓ be the limit of the sequence. Then $\lim _{n \rightarrow \infty} t_{n+1}=\ell$ and, in view of part (a), $2 \leq \ell \leq 3$.
So, according to the Arithmetic Rules for limits of sequences,

$$
\ell=\lim _{n \rightarrow \infty} t_{n+1}=\lim _{n \rightarrow \infty} \sqrt{3+2 t_{n}}=\sqrt{3+2 \ell}
$$

Hence,

$$
\ell^{2}=3+2 \ell \Longleftrightarrow(\ell-3)(\ell+1)=0 \Longleftrightarrow \ell=3 \text { or } \ell=-1 .
$$

So $\ell=3$.
4.13 Note that for any $n \in \mathbb{N}$,

$$
\left(1+\frac{1}{2 n}\right)^{n}=\left[\left(1+\frac{1}{2 n}\right)^{2 n}\right]^{\frac{1}{2}}=\sqrt{\left(1+\frac{1}{2 n}\right)^{2 n}}
$$

As the limit of the expression after the square root is equal to e (this expression corresponds to the subsequence of the even-numbered terms of the sequence defining the number e), Exercise 3.27 implies that the limit of the expression is equal to $\mathrm{e}^{\frac{1}{2}}$.

