
3.34 We give a proof by contradiction. So assume that ℓ 6= ℓ′.

Let ε = |ℓ− ℓ′|.
As lim

n→∞
tn = ℓ, there exist an N such that

|tn − ℓ| < 1

2
ε,

whenever n > N . Similarly, as lim
n→∞

tn = ℓ′, there exist an N ′ such that

|tn − ℓ′| < 1

2
ε,

whenever n > N ′.

Hence, for any n > max{N,N ′}, the Triangle Inequality implies that

ε = |ℓ− ℓ′| = |ℓ− tn + tn − ℓ′| ≤ |ℓ− tn|+ |tn − ℓ′| < 1

2
ε+ 1

2
ε = ε,

which is impossible.

3.37 We will prove that the sequence
(
lnxn

)∞

n=1
is unbounded. So let u > 0.

As

lnxn < −u ⇐⇒ xn < e−u,

we choose ε = e−u. As lim
n→∞

xn = 0, an N exists such that

|xn| < ε = e−u,

whenever n > N . Then for n > N ,

|xn| < e−u ⇐⇒ −e−u < xn < e−u.

Hence, for n > N , lnxn < −u.

As the sequence
(
lnxn

)∞

n=1
is unbounded, it is divergent.

4.4 Note that for n > 1
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≥

Bernoulli’s

Inequality

(

1− n · 1

n2

)

· n

n− 1
=

n− 1

n
· n

n− 1
= 1.

As the terms of the sequence are positive, this implies that the sequence is increasing.

4.6 (a) For any n ∈ IN,
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(b) According to part (a), for any n,

(
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As the limits of the first two factors of this expression are both equal to e and the limit of the third factor

is 1, the Product Rule for limits of sequences implies that the limit of the expression is equal to e2.

4.10 Assume that lim
n→∞

(−1)nbn = ℓ.

Then, according to Theorem 2,

ℓ = lim
k→∞

(−1)2kb2k = lim
k→∞

b2k
︸︷︷︸

≥0

≥
Theorem 3.1

0.

Similarly,

ℓ = lim
k→∞

(−1)2k−1b2k−1 = − lim
k→∞

b2k−1 ≤ 0.

So ℓ = 0. Now, according to Exercise 3.28, the sequence
(
bn
)∞

n=1
=
(∣
∣(−1)nbn

∣
∣
)∞

n=1
converges to |ℓ| = 0.

4.12 (a) For n ∈ IN we introduce the statement P(n): 2 ≤ tn ≤ 3.

(1) First we show that the statement P(1) is true: 2 ≤ 2 ≤ 3.

(2) Let k ∈ IN and assume that P(k) is true, that is: 2 ≤ tk ≤ 3.

Then

7 ≤ 3 + 2tk ≤ 9 =⇒ 2 <
√
7 ≤

√
3 + 2tk ≤

√
9 = 3 =⇒ 2 < tk+1 ≤ 3.

This proves that P(k + 1) is true.

According to the Principle of Induction, the statement P(n) is true for all n ∈ IN.

(b) Let n ∈ IN. Then the fact that 2 ≤ tn ≤ 3 implies that

tn+1 − tn =
√
3 + 2tn − tn =

[
√
3 + 2tn − tn][

√
3 + 2tn + tn]√

3 + 2tn + tn
=

3 + 2tn − t2
n√

3 + 2tn + tn

=
−(tn − 3)(tn + 1)√

3 + 2tn + tn
≥ 0.

Hence, the sequence
(
tn
)∞

n=1
is increasing.

Alternative:

As tn and tn+1 are both positive,

tn+1 ≥ tn ⇐⇒ t2
n+1 ≥ t2

n
⇐⇒ 3 + 2tn ≥ t2

n
⇐⇒ t2

n
− 2tn − 3 ≤ 0 ⇐⇒ (tn − 3)(tn + 1) ≤ 0

⇐⇒ −1 ≤ tn ≤ 3.

So, according to part (a), the sequence
(
tn
)∞

n=1
is increasing.



(c) Because the sequence is increasing and bounded above (by 3), the Monotone Sequence Property implies

the convergence of the sequence
(
tn
)∞

n=1
. Let ℓ be the limit of the sequence. Then lim

n→∞
tn+1 = ℓ and, in

view of part (a), 2 ≤ ℓ ≤ 3.

So, according to the Arithmetic Rules for limits of sequences,

ℓ = lim
n→∞

tn+1 = lim
n→∞

√
3 + 2tn =

√
3 + 2ℓ.

Hence,

ℓ2 = 3 + 2ℓ ⇐⇒ (ℓ− 3)(ℓ+ 1) = 0 ⇐⇒ ℓ = 3 or ℓ = −1.

So ℓ = 3.

4.13 Note that for any n ∈ IN,

(
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=
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)2n] 1

2
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√
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1
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.

As the limit of the expression after the square root is equal to e (this expression corresponds to the

subsequence of the even-numbered terms of the sequence defining the number e), Exercise 3.27 implies

that the limit of the expression is equal to e
1

2 .


