5.1 If we consider the graph of the function k, then we see that the graph has a 'hole' at $x=1$ and that it makes a 'jump' at 1 . So the function is not continuous at $x=1$.

5.2 Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence converging to 3 .

We have to prove that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(3)=21$.
According to the Arithmetic Rules for limits of sequences,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} f\left(x_{n}\right) & =\lim _{n \rightarrow \infty}\left[x_{n}^{2}+2 x_{n}+6\right]=\lim _{n \rightarrow \infty}\left[x_{n}^{2}\right]+\lim _{n \rightarrow \infty}\left[2 x_{n}\right]+\lim _{n \rightarrow \infty} 6 \\
& =\left[\lim _{n \rightarrow \infty} x_{n}\right]^{2}+2 \lim _{n \rightarrow \infty} x_{n}+6=9+6+6=21 .
\end{aligned}
$$

An ε, N-proof goes as follows.
Let $\varepsilon>0$. We must find an N such that

$$
\left|f\left(x_{n}\right)-21\right|=\left|x_{n}^{2}+2 x_{n}+6-21\right|<\varepsilon,
$$

whenever $n>N$. Note, however, that for all n,

$$
\left|x_{n}^{2}+2 x_{n}+6-21\right|=\left|x_{n}^{2}+2 x_{n}-15\right|=\left|\left(x_{n}+5\right)\left(x_{n}-3\right)\right|=\left|x_{n}+5\right|\left|x_{n}-3\right| .
$$

Since the sequence $\left(x_{n}\right)_{n=1}^{\infty}$ converges to 3 , we can find, for $\varepsilon=1$ a number $N^{\prime} \in \mathbb{R}$ such that $\left|x_{n}-3\right|<1$, whenever $n>N^{\prime}$. Then for all $n>N^{\prime}$,

$$
\left|x_{n}+5\right|=\left|x_{n}-3+8\right| \leq\left|x_{n}-3\right|+8<9,
$$

so that

$$
\left|x_{n}^{2}+2 x_{n}+6-21\right|=\left|x_{n}+5\right|\left|x_{n}-3\right|<9\left|x_{n}-3\right| .
$$

Since $x_{n} \rightarrow 3$ as $n \rightarrow \infty$, an $N^{\prime \prime}$ exists such that

$$
\left|x_{n}-3\right|<\frac{1}{9} \varepsilon,
$$

whenever $n>N^{\prime \prime}$. Hence, for $n>N=\max \left\{N^{\prime}, N^{\prime \prime}\right\}$,

$$
\left|x_{n}^{2}+2 x_{n}+6-21\right|<9\left|x_{n}-3\right|<\varepsilon .
$$

In other words: $\lim _{n \rightarrow \infty}\left(x_{n}^{2}+2 x_{n}+6\right)=21$.
As the sequence $\left(x_{n}\right)_{n=1}^{\infty}$ was arbitrarily chosen, this proves that $\lim _{x \rightarrow 3} f(x)=21$.
5.4 Let $\left(t_{n}\right)_{n=1}^{\infty}$ be a sequence of nonzero terms converging to 0 .

We have to prove that $\lim _{n \rightarrow \infty} q\left(t_{n}\right)=q(0)=6$. Note that for all n,

$$
q\left(t_{n}\right)=\frac{\left(2+3 t_{n}\right)^{2}-4}{2 t_{n}}=\frac{4+12 t_{n}+9 t_{n}^{2}-4}{2 t_{n}}=6+4 \frac{1}{2} t_{n}
$$

Here we used the fact that $t_{n} \neq 0$, for all n.
Hence, the Arithmetic Rules for limits of sequences imply that

$$
\lim _{n \rightarrow \infty} q\left(t_{n}\right)=\lim _{n \rightarrow \infty}\left[6+4 \frac{1}{2} t_{n}\right]=6+4 \frac{1}{2} \lim _{n \rightarrow \infty} t_{n}=6
$$

An ε, N-proof goes as follows.
Let $\varepsilon>0$. We must find an N such that

$$
\left|f\left(x_{n}\right)-6\right|=\left|\frac{\left(2+3 x_{n}\right)^{2}-4}{2 x_{n}}-6\right|<\varepsilon
$$

whenever $n>N$. Note, however, that for all n,

$$
\left|\frac{\left(2+3 x_{n}\right)^{2}-4}{2 x_{n}}-6\right|=\left|\frac{4+12 x_{n}+9 x_{n}^{2}-4}{2 x_{n}}-\frac{12 x_{n}}{2 x_{n}}\right|=\frac{9}{2}\left|x_{n}\right| .
$$

Since $x_{n} \rightarrow 0$ as $n \rightarrow \infty$, an N exists such that

$$
\left|x_{n}\right|<\frac{2}{9} \varepsilon,
$$

whenever $n>N$. Hence, for $n>N$,

$$
\left|\frac{\left(2+3 x_{n}\right)^{2}-4}{2 x_{n}}-6\right|=\frac{9}{2}\left|x_{n}\right|<\varepsilon .
$$

In other words: $\lim _{n \rightarrow \infty} \frac{\left(2+3 x_{n}\right)^{2}-4}{2 x_{n}}=6$.
As the sequence $\left(x_{n}\right)_{n=1}^{\infty}$ was arbitrarily chosen, this proves that $\lim _{x \rightarrow 0} f(x)=6$.
5.9 Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence with positive terms converging to 0 .

Let $\varepsilon>0$. Because $\lim _{n \rightarrow \infty} x_{n}=0$, there exists an $N \in \mathbb{R}$ such that

$$
\underbrace{\left|x_{n}-0\right|}_{=x_{n}}<\varepsilon^{3}
$$

whenever $n>N$. Then, for all $n>N$,

$$
\left|\sqrt[3]{x_{n}}-0\right|=\sqrt[3]{x_{n}}<\sqrt[3]{\varepsilon^{3}}=\varepsilon
$$

This proves that $\lim _{n \rightarrow \infty} \sqrt[3]{x_{n}}=0=f(0)$.
Hence, the function f is continuous at 0 .
Now let $c \in(0,1)$. We will show that f is continuous at $x=c$.
Observe that

$$
f(c)=\sqrt[3]{c}=\sqrt[3]{\frac{1}{\frac{1}{c}}}=\frac{1}{\sqrt[3]{\frac{1}{c}}}
$$

If $\left(x_{n}\right)_{n=1}^{\infty}$ is a sequence with positive terms converging to c, then

$$
\frac{1}{x_{n}} \rightarrow \frac{1}{c} \quad \text { as } \quad n \rightarrow \infty
$$

As $\frac{1}{c}>1$, Exercise 7 implies that

$$
\sqrt[3]{\frac{1}{x_{n}}} \rightarrow \sqrt[3]{\frac{1}{c}} \quad \text { as } \quad n \rightarrow \infty
$$

so that

$$
\sqrt[3]{x_{n}}=\frac{1}{\sqrt[3]{\frac{1}{x_{n}}}} \rightarrow \frac{1}{\sqrt[3]{\frac{1}{c}}}=\sqrt[3]{c} \quad \text { as } \quad n \rightarrow \infty
$$

5.10 (b) According to Exercise 4, the function q is continuous at $t=0$.

Let $c \neq 0$. We show that q is continuous at $t=c$.
In view of Example 6, the (polynomial) function $t \mapsto 12 t+9 t^{2}$ is continuous at c. Similarly, the function $t \mapsto 2 t$ is continuous at c. So the Quotient Rule for continuous functions implies that the function q is continuous at $t=c$. Since $c \neq 0$ was arbitrarily chosen, the function q is continuous.
5.11 Let $c>0$. By Example 5, the function g on $(0, \infty)$ defined by $g(x)=x^{n}$ is continuous at c.

Since $g(x) \neq 0$, for all $x>0$, the Quotient Rule for continuous functions implies that the function $f=\frac{1}{g}$ is continuous at c.
Since the number $c>0$ was chosen arbitrarily, the function f is continuous on the interval $(0, \infty)$.
In a similar way one can prove that the function f is continuous on the interval $(-\infty, 0)$.
5.12 Let $c \in J$ and let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence in J converging to c. Since g is continuous at $c, \lim _{n \rightarrow \infty} g\left(x_{n}\right)=g(c)$. Then, according to Exercise 3.28,

$$
\lim _{n \rightarrow \infty}|g|\left(x_{n}\right)=\lim _{n \rightarrow \infty}\left|g\left(x_{n}\right)\right|=|g(c)|=|g|(c)
$$

As the sequence $\left(x_{n}\right)_{n=1}^{\infty}$ was chosen arbitrarily, this proves that $\lim _{x \rightarrow c}|g|(x)=|g|(c)$. In other words: the function $|g|$ is continuous at c.
As c was chosen arbitrarily, this implies that the function g is continuous.
Alternative: first prove that the function $f: x \rightarrow|x|$ is continuous and then apply Theorem 2.
5.17 (b) As $-1 \leq \sin t \leq 1$ for all t, we get $|\sin t| \leq 1$. This implies that for all $x \neq 0$,

$$
\left|x \sin \frac{1}{x}\right|=|x|\left|\sin \frac{1}{x}\right| \leq|x| .
$$

As a consequence, for all $x \neq 0$,

$$
-|x| \leq x \sin \frac{1}{x} \leq|x|
$$

so that for all $x,-|x| \leq f(x) \leq|x|$. As the functions h and g defined by $g(x)=-|x|$ and $h(x)=|x|$, are continuous at $x=0$ and $g(0)=h(0)$, the Sandwich Lemma implies that the function f is continuous at $x=0$.
5.18 We introduce the function f on the interval $[1,2]$ by $f(x)=x^{3}+2$ and the function h on the interval $[0,1]$ by $h(x)=x(x+2)=x^{2}+2 x$. According to Example 6 these functions are continuous at $x=1$. As $f(1)=3=h(1)$, the Glue Lemma implies that the function g is continuous at $x=1$.
5.21 As $g(2)=9$,

$$
\begin{aligned}
|g(x)-g(2)|<\frac{1}{1000} & \Longleftrightarrow\left|x^{2}+2 x+1-9\right|<\frac{1}{1000} \Longleftrightarrow\left|x^{2}+2 x-8\right|<\frac{1}{1000} \\
& \Longleftrightarrow|(x+4)(x-2)|<\frac{1}{1000} \Longleftrightarrow|x+4||x-2|<\frac{1}{1000} .
\end{aligned}
$$

If we choose, in advance, $\delta<1$, then for $x \in(2-\delta, 2+\delta)$,

$$
2-\delta<x<2+\delta \Longrightarrow 6-\delta<x+4<6+\delta \Longrightarrow 5<x+4<7 \Longrightarrow|x+4|<7
$$

Hence, the inequality $|g(x)-g(2)|<\frac{1}{1000}$ is satisfied if

$$
|x-2|<\frac{1}{7000}
$$

So we take $\delta=\frac{1}{7000}$ (which is smaller than 1).
For an arbitrary $\varepsilon>0$ we take $\delta=\min \left\{1, \frac{1}{7} \varepsilon\right\}$. Then for any x in the interval $2-\delta, 2+\delta$), we know that $|x+4|<7$ (because $\delta \leq 1$) and that $|x-2|<\frac{1}{7} \varepsilon$ (because $\delta \leq \frac{1}{7} \varepsilon$).
Hence,

$$
|g(x)-g(2)|=|x+4||x-2|<7 \cdot \frac{1}{7} \varepsilon=\varepsilon .
$$

That is: the function g is continuous at $x=2$.
5.22 Observe that

$$
|k(x)|<\frac{1}{1000} \Longleftrightarrow|x(x-1)(x+2)|<\frac{1}{1000} \Longleftrightarrow|x-1| \cdot|x(x+2)|<\frac{1}{1000}
$$

If we choose, in advance, $\delta \leq 1$, then for $x \in(1-\delta, 1+\delta), 0<x<2$, so that

$$
|x(x+2)|=\left|x^{2}+2 x\right| \leq\left|x^{2}\right|+|2 x|=x^{2}+2|x| \leq 4+4=8 .
$$

So the above inequality is satisfied when $|x-1|<\frac{1}{8000}$. Hence, we may choose $\delta=\frac{1}{8000}$.

