5.1 If we consider the graph of the function k, then we see that the graph has a 'hole’ at x = 1 and that it

makes a ’jump’ at 1. So the function is not continuous at =z = 1.
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5.2 Let (ﬂUn)ZO:l be a sequence converging to 3.
We have to prove that lim f(z,) = f(3) = 2.
n—oo

According to the Arithmetic Rules for limits of sequences,

i, f(en) = Jiw [+ 200+ 6] = Ji [on] + Jim [20n] + Jiv 6

= [lim 2,]° +2 lim 2, +6=9+6+6 = 21.
n— o0 n—oo

An €, N-proof goes as follows.

Let € > 0. We must find an N such that
|f(zn) = 21| = |2} + 22, + 6 — 21| <&,
whenever n > N. Note, however, that for all n,
|22 4+ 22, + 6 — 21| = |22 + 22, — 15| = |(@n + 5)(@n — 3)| = |@n + 5[|zn — 3]

Since the sequence (:cn)zo converges to 3, we can find, for e = 1 a number N’ € IR such that |z, —3] < 1,

=1
whenever n > N’. Then for all n > N/,

|zn, + 5] = |z, —3+8] < |z, —3|+8<9,

so that
|22 4 2@, + 6 — 21| = |2y + 5||zy — 3| < 9]z, — 3]

Since x,, — 3 as n — oo, an IN” exists such that
|zn — 3| < %5,
whenever n > N”. Hence, for n > N = max{N', N"},
|22 + 2n 4+ 6 — 21| < 9]z, — 3| <e.

In other words: lim (x% + 2x, + 6) = 21.
n—oo

As the sequence (xn)oof

was arbitrarily chosen, this proves that lim f(z) = 21.
n=1 r—3



5.4 Let (tn)zozl be a sequence of nonzero terms converging to 0.

We have to prove that lim ¢(t,) = ¢(0) = 6. Note that for all n,
n—oo

(24 3t,)2 —4  4+12¢,+9t2 —4

=6+4L¢,.
2, 2, t45tn

q(tn) =
Here we used the fact that t,, # 0, for all n.
Hence, the Arithmetic Rules for limits of sequences imply that

lim ¢(t,) = nl;rrgo[6+42tn] 6+42nlgrgotn 6.

n—oo

An e, N-proof goes as follows.

Let € > 0. We must find an N such that

|f($n)_6‘:’(2+32m¢—6‘<57

Tp
whenever n > N. Note, however, that for all n,

9

= 5|2nl.

‘(2+3xn)27476‘:‘4+12xn+9x%747 12z,
2z,

22, 22,

Since x, — 0 as n — oo, an N exists such that
2
|In| < 557

whenever n > N. Hence, for n > N,

(24 32,)? — 4 0
T*G = §|I'n| < €.
2 24
In other words: lim (—&—336—71) = 6.
n— oo 2z,
As the sequence (xn)oofl was arbitrarily chosen, this proves that lir% f(z) =6.
n= T

5.9 Let (:En)f::l be a sequence with positive terms converging to 0.

Let € > 0. Because lim z, = 0, there exists an N € IR such that
n—oo

|z, — 0] < &3,

=Tn

whenever n > N. Then, for alln > N,
| YTn — 0| = /Tn, < Ved =e.

. a0 —
This proves that nh_}n’;o YT =0= f(0).

Hence, the function f is continuous at O.

Now let ¢ € (0,1). We will show that f is continuous at z = c.

Observe that
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5.10 (b)

5.11

5.12

5.17 (b)

If (acn)zozl is a sequence with positive terms converging to ¢, then

1
— — — as n — oo.
T, c
1 . .
As = > 1, Exercise 7 implies that
c
1 1
o/ — U= as n— oo,
Ty c
so that
1 1 5
Xy = —=—= = —= =+V/c as n —oo.
BL 31
Ty c

According to Exercise 4, the function ¢ is continuous at ¢ = 0.

Let ¢ # 0. We show that ¢ is continuous at ¢ = c.

In view of Example 6, the (polynomial) function ¢ — 12t + 9¢2 is continuous at ¢. Similarly, the function
t — 2t is continuous at c¢. So the Quotient Rule for continuous functions implies that the function ¢ is

continuous at t = c¢. Since ¢ # 0 was arbitrarily chosen, the function ¢ is continuous.

Let ¢ > 0. By Example 5, the function g on (0, 00) defined by g(z) = =™ is continuous at c.

Since g(z) # 0, for all > 0, the Quotient Rule for continuous functions implies that the function f = 1
is continuous at c. ’
Since the number ¢ > 0 was chosen arbitrarily, the function f is continuous on the interval (0, 00).

In a similar way one can prove that the function f is continuous on the interval (—oo, 0).

Let ¢ € J and let (:cn)zo_l be a sequence in J converging to ¢. Since g is continuous at ¢, lim g¢(z,) = g(c).
- n—oo

Then, according to Exercise 3.28,

Jim|g|(zn) = Tim |g(zn) = lg(c)] = |g](c)-

As the sequence (xn):O

_, was chosen arbitrarily, this proves that lim |g|(z) = |g|(c). In other words: the
- Tr—c

function |g| is continuous at c.
As ¢ was chosen arbitrarily, this implies that the function ¢ is continuous.

Alternative: first prove that the function f:x — |z| is continuous and then apply Theorem 2.

As —1 <sint < 1 for all ¢, we get |sint| < 1. This implies that for all 2 # 0,
o1 o1
|z sin =| = |z| |sin = | < |=].
T T
As a consequence, for all x # 0,
1
—|z| <z sin— < |z,
T

so that for all x, —|z| < f(x) < |z|. As the functions h and g defined by g(z) = —|z| and h(x) = |z|, are
continuous at = 0 and ¢g(0) = h(0), the Sandwich Lemma implies that the function f is continuous at

x=0.



5.18

5.21

5.22

We introduce the function f on the interval [1,2] by f(z) = 2® + 2 and the function h on the interval
[0,1] by h(z) = z(z +2) = 2% + 2z. According to Example 6 these functions are continuous at x = 1. As
f(1) =3 = h(1), the Glue Lemma implies that the function g is continuous at x = 1.

As g(2) =9,
9(z) —9(2)| < 35 == 22 + 22+ 1 — 9| < 5 < [2? + 22 — 8| < 55

= |+ 4)(@ - 2)| < 55 <= o+ 4l o — 2] < G-

If we choose, in advance, § < 1, then for x € (2 —§,2 + 9),
2-0<2<240=6-0<2+4<6+0=5<ar+4<T= |z +4|<T.
Hence, the inequality |g(z) — g(2)| < 1o5 is satisfied if
|z — 2| < =g

So we take § = which is smaller than 1).

1 (
7000
For an arbitrary € > 0 we take § = min{1, %5} Then for any z in the interval 2 — §,2 + §), we know that
|z +4| < 7 (because § < 1) and that |z — 2| < 1c (because § < 1¢).

Hence,

lg(z) —9(2)| = |z +4|[x —2| <T-

=

That is: the function g is continuous at x = 2.

Observe that

|k(z)] < ﬁ = |z(z—1)(z+2)| < ﬁ = lr—1]-|z(z+2)| < ﬁ.

If we choose, in advance, § < 1, then for z € (1 —§,1+4), 0 < z < 2, so that

lz(x +2)| = |22 + 22| < 22| + 22| = 2% + 22| <4 +4 =8.

_1

So the above inequality is satisfied when |z — 1| < g555-

Hence, we may choose 6 = gy55-



