
5.1 If we consider the graph of the function k, then we see that the graph has a ’hole’ at x = 1 and that it

makes a ’jump’ at 1. So the function is not continuous at x = 1.

x

y

1

2

1

k

5.2 Let
(
xn

)
∞

n=1
be a sequence converging to 3.

We have to prove that lim
n→∞

f(xn) = f(3) = 21.

According to the Arithmetic Rules for limits of sequences,

lim
n→∞

f(xn) = lim
n→∞

[
x2

n
+ 2xn + 6

]
= lim

n→∞

[
x2

n

]
+ lim

n→∞

[
2xn

]
+ lim

n→∞

6

=
[
lim
n→∞

xn

]2
+ 2 lim

n→∞

xn + 6 = 9 + 6 + 6 = 21.

An ε,N -proof goes as follows.

Let ε > 0. We must find an N such that

∣
∣f(xn)− 21

∣
∣ =

∣
∣x2

n
+ 2xn + 6− 21

∣
∣ < ε,

whenever n > N . Note, however, that for all n,

∣
∣x2

n
+ 2xn + 6− 21

∣
∣ =

∣
∣x2

n
+ 2xn − 15

∣
∣ =

∣
∣(xn + 5)(xn − 3)

∣
∣ = |xn + 5||xn − 3|.

Since the sequence
(
xn

)
∞

n=1
converges to 3, we can find, for ε = 1 a number N ′ ∈ IR such that |xn−3| < 1,

whenever n > N ′. Then for all n > N ′,

|xn + 5| = |xn − 3 + 8| ≤ |xn − 3|+ 8 < 9,

so that
∣
∣x2

n
+ 2xn + 6− 21

∣
∣ = |xn + 5||xn − 3| < 9|xn − 3|.

Since xn → 3 as n → ∞, an N ′′ exists such that

|xn − 3| < 1

9
ε,

whenever n > N ′′. Hence, for n > N = max{N ′, N ′′},

∣
∣x2

n
+ 2xn + 6− 21

∣
∣ < 9|xn − 3| < ε.

In other words: lim
n→∞

(
x2

n
+ 2xn + 6

)
= 21.

As the sequence
(
xn

)
∞

n=1
was arbitrarily chosen, this proves that lim

x→3

f(x) = 21.



5.4 Let
(
tn
)
∞

n=1
be a sequence of nonzero terms converging to 0.

We have to prove that lim
n→∞

q(tn) = q(0) = 6. Note that for all n,

q(tn) =
(2 + 3tn)

2 − 4

2tn
=

4 + 12tn + 9t2
n
− 4

2tn
= 6 + 4 1

2
tn.

Here we used the fact that tn 6= 0, for all n.

Hence, the Arithmetic Rules for limits of sequences imply that

lim
n→∞

q(tn) = lim
n→∞

[
6 + 4 1

2
tn
]
= 6 + 4 1

2
lim

n→∞

tn = 6.

An ε,N -proof goes as follows.

Let ε > 0. We must find an N such that

∣
∣f(xn)− 6

∣
∣ =

∣
∣
∣
(2 + 3xn)

2 − 4

2xn

− 6
∣
∣
∣ < ε,

whenever n > N . Note, however, that for all n,

∣
∣
∣
(2 + 3xn)

2 − 4

2xn

− 6
∣
∣
∣ =

∣
∣
∣
4 + 12xn + 9x2

n
− 4

2xn

− 12xn

2xn

∣
∣
∣ = 9

2
|xn|.

Since xn → 0 as n → ∞, an N exists such that

|xn| < 2

9
ε,

whenever n > N . Hence, for n > N ,

∣
∣
∣
(2 + 3xn)

2 − 4

2xn

− 6
∣
∣
∣ = 9

2
|xn| < ε.

In other words: lim
n→∞

(2 + 3xn)
2 − 4

2xn

= 6.

As the sequence
(
xn

)
∞

n=1
was arbitrarily chosen, this proves that lim

x→0

f(x) = 6.

5.9 Let
(
xn

)
∞

n=1
be a sequence with positive terms converging to 0.

Let ε > 0. Because lim
n→∞

xn = 0, there exists an N ∈ IR such that

|xn − 0|
︸ ︷︷ ︸

=xn

< ε3,

whenever n > N . Then, for all n > N ,

| 3
√
xn − 0| = 3

√
xn <

3
√
ε3 = ε.

This proves that lim
n→∞

3
√
xn = 0 = f(0).

Hence, the function f is continuous at 0.

Now let c ∈ (0, 1). We will show that f is continuous at x = c.

Observe that

f(c) = 3
√
c =

3

√
√
√
√

1
1

c

=
1

3

√

1

c

.



If
(
xn

)
∞

n=1
is a sequence with positive terms converging to c, then

1

xn

→ 1

c
as n → ∞.

As
1

c
> 1, Exercise 7 implies that

3

√
1

xn

→ 3

√

1

c
as n → ∞,

so that

3
√
xn =

1

3

√
1

xn

→ 1

3

√

1

c

= 3
√
c as n → ∞.

5.10 (b) According to Exercise 4, the function q is continuous at t = 0.

Let c 6= 0. We show that q is continuous at t = c.

In view of Example 6, the (polynomial) function t 7→ 12t+9t2 is continuous at c. Similarly, the function

t 7→ 2t is continuous at c. So the Quotient Rule for continuous functions implies that the function q is

continuous at t = c. Since c 6= 0 was arbitrarily chosen, the function q is continuous.

5.11 Let c > 0. By Example 5, the function g on (0,∞) defined by g(x) = xn is continuous at c.

Since g(x) 6= 0, for all x > 0, the Quotient Rule for continuous functions implies that the function f =
1

g
is continuous at c.

Since the number c > 0 was chosen arbitrarily, the function f is continuous on the interval (0,∞).

In a similar way one can prove that the function f is continuous on the interval (−∞, 0).

5.12 Let c ∈ J and let
(
xn

)
∞

n=1
be a sequence in J converging to c. Since g is continuous at c, lim

n→∞

g(xn) = g(c).

Then, according to Exercise 3.28,

lim
n→∞

|g|(xn) = lim
n→∞

|g(xn)| = |g(c)| = |g|(c).

As the sequence
(
xn

)
∞

n=1
was chosen arbitrarily, this proves that lim

x→c

|g|(x) = |g|(c). In other words: the

function |g| is continuous at c.
As c was chosen arbitrarily, this implies that the function g is continuous.

Alternative: first prove that the function f :x → |x| is continuous and then apply Theorem 2.

5.17 (b) As −1 ≤ sin t ≤ 1 for all t, we get | sin t| ≤ 1. This implies that for all x 6= 0,

∣
∣x sin

1

x

∣
∣ = |x|

∣
∣sin

1

x

∣
∣ ≤ |x|.

As a consequence, for all x 6= 0,

−|x| ≤ x sin
1

x
≤ |x|,

so that for all x, −|x| ≤ f(x) ≤ |x|. As the functions h and g defined by g(x) = −|x| and h(x) = |x|, are
continuous at x = 0 and g(0) = h(0), the Sandwich Lemma implies that the function f is continuous at

x = 0.



5.18 We introduce the function f on the interval [1, 2] by f(x) = x3 + 2 and the function h on the interval

[0, 1] by h(x) = x(x+2) = x2 +2x. According to Example 6 these functions are continuous at x = 1. As

f(1) = 3 = h(1), the Glue Lemma implies that the function g is continuous at x = 1.

5.21 As g(2) = 9,

|g(x)− g(2)| < 1

1000
⇐⇒ |x2 + 2x+ 1− 9| < 1

1000
⇐⇒ |x2 + 2x− 8| < 1

1000

⇐⇒ |(x+ 4)(x− 2)| < 1

1000
⇐⇒ |x+ 4| |x− 2| < 1

1000
.

If we choose, in advance, δ < 1, then for x ∈ (2− δ, 2 + δ),

2− δ < x < 2 + δ =⇒ 6− δ < x+ 4 < 6 + δ =⇒ 5 < x+ 4 < 7 =⇒ |x+ 4| < 7.

Hence, the inequality |g(x)− g(2)| < 1

1000
is satisfied if

|x− 2| < 1

7000
.

So we take δ = 1

7000
(which is smaller than 1).

For an arbitrary ε > 0 we take δ = min{1, 1

7
ε}. Then for any x in the interval 2− δ, 2+ δ), we know that

|x+ 4| < 7 (because δ ≤ 1) and that |x− 2| < 1

7
ε (because δ ≤ 1

7
ε).

Hence,

|g(x)− g(2)| = |x+ 4| |x− 2| < 7 · 1

7
ε = ε.

That is: the function g is continuous at x = 2.

5.22 Observe that

|k(x)| < 1

1000
⇐⇒ |x(x − 1)(x+ 2)| < 1

1000
⇐⇒ |x− 1| · |x(x + 2)| < 1

1000
.

If we choose, in advance, δ ≤ 1, then for x ∈ (1− δ, 1 + δ), 0 < x < 2, so that

|x(x + 2)| = |x2 + 2x| ≤ |x2|+ |2x| = x2 + 2|x| ≤ 4 + 4 = 8.

So the above inequality is satisfied when |x− 1| < 1

8000
. Hence, we may choose δ = 1

8000
.


