
5.3 We prove that the function h defined by

h(x) =







2
√
x− 4

x− 4
if x 6= 4

1

2
if x = 4.

is continuous at x = 4.

Let
(

xn

)

∞

n=1
be a sequence converging to 4. We assume that xn 6= 4 for all n (Can you explain why this

is allowed?). We show that

lim
n→∞

h(xn) = lim
n→∞

2
√
xn − 4

xn − 4
= 1

2
.

Since lim
n→∞

(xn − 4) = 0, we cannot use the Quotient Rule for limits of sequences directly, but if we apply

the simplification (here we use that xn 6= 4)

2
√
xn − 4

xn − 4
=

2(
√
xn − 2)

(
√
xn − 2)(

√
xn + 2)

=
2√

xn + 2
,

we can use the Quotient Rule (and Exercise 3.27) to obtain

lim
n→∞

2
√
xn − 4

xn − 4
= lim

n→∞

2√
xn + 2

= 1

2
.

As the sequence
(

xn

)

∞

n=1
was arbitrarily chosen, this proves that lim

x→4

2
√
x− 4

x− 4
= 1

2
= h(4). That is: the

function h is continuous at x = 4.

5.5 Let c > 0. We will prove that the function f is continuous at c.

Let
(

xn

)

∞

n=1
be a sequence converging to c. We have to prove that lim

n→∞

f(xn) = f(c) =
1

c
.

Since xn → c 6= 0 as n → ∞, the Arithmetic Rules for limits of sequences imply that

lim
n→∞

1

xn

=
1

lim
n→∞

xn

=
1

c
.

As the sequence
(

xn

)

∞

n=1
was arbitrarily chosen, this proves that lim

x→c

f(x) = f(c).

5.6 Take an arbitrary c ∈ IR and let
(

yn
)

∞

n=1
be a sequence converging to c.

We have to show that lim
n→∞

t(yn) = t(c).

Since yn → c as n → ∞, the Arithmetic Rules for limits of sequences imply that

lim
n→∞

t(yn) = lim
n→∞

5y7
n
− y2

n
+ 15

y2
n
+ 7

=
5 lim
n→∞

y7
n
− lim

n→∞

y2
n
+ 15

lim
n→∞

y2
n
+ 7

=
5c7 − c2 + 15

c2 + 7
= t(c).

As the sequence
(

yn
)

∞

n=1
was arbitrarily chosen, this proves that t is continuous at c.

5.7 Let
(

xn

)

∞

n=1
be a sequence in I \ {c} converging to c.

Then lim
n→∞

f(xn) = f(c).

Since f(xn) ≥ 0 for all n, Theorem 3.1 implies that f(c) ≥ 0.



5.10 (a) According to Exercise 3, the function h is continuous at x = 4.

Now let c ≥ 0 and c 6= 4. We will prove that the function h is continuous at c.

According to Example 2, the function x 7→ √
x is continuous at c. So the Product Rule for continuous

functions implies that the function x 7→ 2
√
x is continuous at c (here we use the fact that the constant

function x 7→ 2 is continuous). By the Sum Rule of continuous functions, the function x 7→ 2
√
x − 4 is

continuous at c.

Example 6 implies that the function x 7→ x− 4 is continuous at c.

Finally, the Quotient Rule for continuous functions implies that the function h is continuous at c.

Since c was chosen arbitrarily, the function h is continuous.

5.13 First note that g(c) = f(c) = h(c).

Let
(

xn

)

∞

n=1
be a sequence in I converging to c.

Then the continuity of g and h at c implies that

lim
n→∞

h(xn) = h(c) = f(c) = g(c) = lim
n→∞

g(xn).

Furthermore for all n ∈ IN

g(xn) ≤ f(xn) ≤ h(xn).

By the Sandwich Lemma (for sequences) this implies that lim
n→∞

f(xn) = f(c). Because the sequence
(

xn

)

∞

n=1
was arbitrarily chosen, this proves that lim

x→c

f(x) = f(c), that is: f is continuous at c.

5.19 We introduce the function g on the interval [1, 2] by g(t) = t and the function h on the interval [0, 1] by

h(t) = 2t2 − 1. According to Example 6 these functions are continuous at t = 1. As g(1) = 1 = h(1), the

Glue Lemma implies that the function p is continuous at t = 1.

5.23 Note that h(2) = 10 and that

|h(z)− h(2)| < 1

1000
⇐⇒ |z3 + z − 10| < 1

1000
.

By deviding z3 + z − 10 by z − 2 we find that

z3 + z − 10 = (z − 2)(z2 + 2z + 5).

If we choose, in advance, δ < 1, then for z ∈ (2 − δ, 2 + δ),

|z2 + 2z + 5| = z2 + 2z + 5 < 9 + 6 + 5 = 20,

so that

|z3 + z − 10| < 20|z − 2
∣

∣.

Hence, the inequality |h(z)− h(2)| < 1

1000
is satisfied if

|z − 2| < 1

20 000
.



So we take δ = 1

20 000
(which is smaller than 1).

For an arbitrary ε > 0 we take δ = min{1, 1

20
ε}. Then for any z in the interval (2 − δ, 2 + δ), we know

that |z2 + 2z + 5| < 20 (because δ ≤ 1) and that |z − 2| < 1

20
ε (because δ ≤ 1

20
ε).

Hence,

|h(z)− h(2)| = |(z − 2)(z2 + 2z + 5)| < 20|z − 2| < ε.

That is: the function h is continuous at z = 2.


