5.3 We prove that the function h defined by

is continuous at x = 4.
Let (a:n)zo:l be a sequence converging to 4. We assume that xz,, # 4 for all n (Can you explain why this

is allowed?). We show that
2z, — 4
lim h(z,) = lim VIn T2

1
n—00 n—oo T, —4 2

Since lim (x,, —4) = 0, we cannot use the Quotient Rule for limits of sequences directly, but if we apply
n—oo

the simplification (here we use that z,, # 4)

2/Tn —4 2(y/Tn — 2) 2
on—4 (Vo —2)(VEa +2)  Ea+2

we can use the Quotient Rule (and Exercise 3.27) to obtain

2y/x —4
_, was arbitrarily chosen, this proves that lirr}1 \/_74 = 1 = h(4). That is: the
n= x—4 T —

function h is continuous at x = 4.

As the sequence (wn)oo

5.5 Let ¢ > 0. We will prove that the function f is continuous at c.
1
Let (a:n)oo_ be a sequence converging to c. We have to prove that lim f(z,) = f(c) = -.
n=1 n—o00 C

Since z, — ¢ # 0 as n — oo, the Arithmetic Rules for limits of sequences imply that

. 1 1 1
Iim — = — = —
n—o0 Xy, lim =z, c

n—o0

As the sequence (xn)zoil was arbitrarily chosen, this proves that lim f(z) = f(c).
= Tr—c

5.6 Take an arbitrary ¢ € R and let (yn):;l be a sequence converging to c.
We have to show that lim t(y,) = t(c).
n—oo

Since y,, — ¢ as n — oo, the Arithmetic Rules for limits of sequences imply that

i 7 ; 2
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n—r oo

t(c).

As the sequence (yn)oo

n—; Was arbitrarily chosen, this proves that ¢ is continuous at c.

5.7 Let (:vn)zozl be a sequence in I \ {c} converging to c.
Then lim f(z,) = f(c).
n—r oo
Since f(zy) > 0 for all n, Theorem 3.1 implies that f(c) > 0.



5.10 (a)

5.13

5.19

5.23

According to Exercise 3, the function A is continuous at x = 4.

Now let ¢ > 0 and ¢ # 4. We will prove that the function A is continuous at c.

According to Example 2, the function x — +/z is continuous at c¢. So the Product Rule for continuous
functions implies that the function & — 2/z is continuous at ¢ (here we use the fact that the constant
function z — 2 is continuous). By the Sum Rule of continuous functions, the function = — 2\/z — 4 is
continuous at c.

Example 6 implies that the function x — x — 4 is continuous at c.

Finally, the Quotient Rule for continuous functions implies that the function A is continuous at c.

Since ¢ was chosen arbitrarily, the function A is continuous.

First note that g(c) = f(c) = h(c).
Let (a:n)zozl be a sequence in I converging to c.

Then the continuity of g and h at ¢ implies that

lim h(zy,) = h(c) = f(c) = g(c) = lim g(xy,).

n—oo n—r oo

Furthermore for all n € IN
9(xn) < f(xn) < h(zn).

By the Sandwich Lemma (for sequences) this implies that lim f(x,) = f(c). Because the sequence
n—oo

(azn)zozl was arbitrarily chosen, this proves that glcgmc f(z) = f(c), that is: f is continuous at c.

We introduce the function g on the interval [1,2] by g(¢) = ¢ and the function A on the interval [0, 1] by
h(t) = 2t — 1. According to Example 6 these functions are continuous at t = 1. As g(1) = 1 = h(1), the

Glue Lemma implies that the function p is continuous at ¢ = 1.

Note that h(2) = 10 and that
|h(z) = h(2)| < 155 <= |2® + 2z — 10| < 1555-
By deviding 23 + z — 10 by z — 2 we find that
224210 = (2 —2)(22 + 22 +5).
If we choose, in advance, § < 1, then for z € (2 — 4,2+ §),

|22 42245 =22 +224+5 <946+ 5 = 20,

so that
2% + 2 — 10| < 20|z — 2|.

Hence, the inequality |h(z) — h(2)| < 1555 is satisfied if

1
|2 = 2| < 55000



So we take § = 20—500 (which is smaller than 1).

For an arbitrary e > 0 we take § = min{1, 55¢}. Then for any z in the interval (2 — 6,2 4 6), we know
that |22 + 2z + 5| < 20 (because § < 1) and that |z — 2| < 3¢ (because § < 5¢).

Hence,

|h(2) — h(2)| = |(z — 2)(2® + 22 + 5)| < 20|z — 2| < &.

That is: the function h is continuous at z = 2.



