5.3 We prove that the function h defined by

$$
h(x)= \begin{cases}\frac{2 \sqrt{x}-4}{x-4} & \text { if } x \neq 4 \\ \frac{1}{2} & \text { if } x=4\end{cases}
$$

is continuous at $x=4$.
Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence converging to 4 . We assume that $x_{n} \neq 4$ for all n (Can you explain why this is allowed?). We show that

$$
\lim _{n \rightarrow \infty} h\left(x_{n}\right)=\lim _{n \rightarrow \infty} \frac{2 \sqrt{x_{n}}-4}{x_{n}-4}=\frac{1}{2}
$$

Since $\lim _{n \rightarrow \infty}\left(x_{n}-4\right)=0$, we cannot use the Quotient Rule for limits of sequences directly, but if we apply the simplification (here we use that $x_{n} \neq 4$)

$$
\frac{2 \sqrt{x_{n}}-4}{x_{n}-4}=\frac{2\left(\sqrt{x_{n}}-2\right)}{\left(\sqrt{x_{n}}-2\right)\left(\sqrt{x_{n}}+2\right)}=\frac{2}{\sqrt{x_{n}}+2}
$$

we can use the Quotient Rule (and Exercise 3.27) to obtain

$$
\lim _{n \rightarrow \infty} \frac{2 \sqrt{x_{n}}-4}{x_{n}-4}=\lim _{n \rightarrow \infty} \frac{2}{\sqrt{x_{n}}+2}=\frac{1}{2}
$$

As the sequence $\left(x_{n}\right)_{n=1}^{\infty}$ was arbitrarily chosen, this proves that $\lim _{x \rightarrow 4} \frac{2 \sqrt{x}-4}{x-4}=\frac{1}{2}=h(4)$. That is: the function h is continuous at $x=4$.
5.5 Let $c>0$. We will prove that the function f is continuous at c.

Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence converging to c. We have to prove that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(c)=\frac{1}{c}$.
Since $x_{n} \rightarrow c \neq 0$ as $n \rightarrow \infty$, the Arithmetic Rules for limits of sequences imply that

$$
\lim _{n \rightarrow \infty} \frac{1}{x_{n}}=\frac{1}{\lim _{n \rightarrow \infty} x_{n}}=\frac{1}{c}
$$

As the sequence $\left(x_{n}\right)_{n=1}^{\infty}$ was arbitrarily chosen, this proves that $\lim _{x \rightarrow c} f(x)=f(c)$.
5.6 Take an arbitrary $c \in \mathbb{R}$ and let $\left(y_{n}\right)_{n=1}^{\infty}$ be a sequence converging to c.

We have to show that $\lim _{n \rightarrow \infty} t\left(y_{n}\right)=t(c)$.
Since $y_{n} \rightarrow c$ as $n \rightarrow \infty$, the Arithmetic Rules for limits of sequences imply that

$$
\lim _{n \rightarrow \infty} t\left(y_{n}\right)=\lim _{n \rightarrow \infty} \frac{5 y_{n}^{7}-y_{n}^{2}+15}{y_{n}^{2}+7}=\frac{5 \lim _{n \rightarrow \infty} y_{n}^{7}-\lim _{n \rightarrow \infty} y_{n}^{2}+15}{\lim _{n \rightarrow \infty} y_{n}^{2}+7}=\frac{5 c^{7}-c^{2}+15}{c^{2}+7}=t(c)
$$

As the sequence $\left(y_{n}\right)_{n=1}^{\infty}$ was arbitrarily chosen, this proves that t is continuous at c.
5.7 Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence in $I \backslash\{c\}$ converging to c.

Then $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(c)$.
Since $f\left(x_{n}\right) \geq 0$ for all n, Theorem 3.1 implies that $f(c) \geq 0$.
5.10 (a) According to Exercise 3, the function h is continuous at $x=4$.

Now let $c \geq 0$ and $c \neq 4$. We will prove that the function h is continuous at c.
According to Example 2, the function $x \mapsto \sqrt{x}$ is continuous at c. So the Product Rule for continuous functions implies that the function $x \mapsto 2 \sqrt{x}$ is continuous at c (here we use the fact that the constant function $x \mapsto 2$ is continuous). By the Sum Rule of continuous functions, the function $x \mapsto 2 \sqrt{x}-4$ is continuous at c.
Example 6 implies that the function $x \mapsto x-4$ is continuous at c.
Finally, the Quotient Rule for continuous functions implies that the function h is continuous at c.
Since c was chosen arbitrarily, the function h is continuous.
5.13 First note that $g(c)=f(c)=h(c)$.

Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence in I converging to c.
Then the continuity of g and h at c implies that

$$
\lim _{n \rightarrow \infty} h\left(x_{n}\right)=h(c)=f(c)=g(c)=\lim _{n \rightarrow \infty} g\left(x_{n}\right) .
$$

Furthermore for all $n \in \mathbb{N}$

$$
g\left(x_{n}\right) \leq f\left(x_{n}\right) \leq h\left(x_{n}\right)
$$

By the Sandwich Lemma (for sequences) this implies that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(c)$. Because the sequence $\left(x_{n}\right)_{n=1}^{\infty}$ was arbitrarily chosen, this proves that $\lim _{x \rightarrow c} f(x)=f(c)$, that is: f is continuous at c.
5.19 We introduce the function g on the interval $[1,2]$ by $g(t)=t$ and the function h on the interval $[0,1]$ by $h(t)=2 t^{2}-1$. According to Example 6 these functions are continuous at $t=1$. As $g(1)=1=h(1)$, the Glue Lemma implies that the function p is continuous at $t=1$.
5.23 Note that $h(2)=10$ and that

$$
|h(z)-h(2)|<\frac{1}{1000} \Longleftrightarrow\left|z^{3}+z-10\right|<\frac{1}{1000} .
$$

By deviding $z^{3}+z-10$ by $z-2$ we find that

$$
z^{3}+z-10=(z-2)\left(z^{2}+2 z+5\right)
$$

If we choose, in advance, $\delta<1$, then for $z \in(2-\delta, 2+\delta)$,

$$
\left|z^{2}+2 z+5\right|=z^{2}+2 z+5<9+6+5=20
$$

so that

$$
\left|z^{3}+z-10\right|<20|z-2| .
$$

Hence, the inequality $|h(z)-h(2)|<\frac{1}{1000}$ is satisfied if

$$
|z-2|<\frac{1}{20000}
$$

So we take $\delta=\frac{1}{20000}$ (which is smaller than 1).
For an arbitrary $\varepsilon>0$ we take $\delta=\min \left\{1, \frac{1}{20} \varepsilon\right\}$. Then for any z in the interval $(2-\delta, 2+\delta)$, we know that $\left|z^{2}+2 z+5\right|<20$ (because $\delta \leq 1$) and that $|z-2|<\frac{1}{20} \varepsilon$ (because $\delta \leq \frac{1}{20} \varepsilon$).
Hence,

$$
|h(z)-h(2)|=\left|(z-2)\left(z^{2}+2 z+5\right)\right|<20|z-2|<\varepsilon .
$$

That is: the function h is continuous at $z=2$.

