5.14 Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence with positive terms which converges to 0 . Then, according to the Arithmetic Rules for limits of sequences,

$$
f\left(x_{n}\right)=\frac{x_{n}^{2}+\sqrt{x_{n}}}{x_{n}+\sqrt{x_{n}}}=\frac{x_{n} \sqrt{x_{n}}+1}{\sqrt{x_{n}}+1}=\frac{1}{1}=1=f(0) .
$$

As the sequence $\left(x_{n}\right)_{n=1}^{\infty}$ was chosen arbitrarily, this implies that the function f is continuous at $x=1$.
5.20 Note that

$$
u(x)=\max \{-5 x, 3 x\}= \begin{cases}3 x & \text { if } x \geq 0 \\ -5 x & \text { if } x<0\end{cases}
$$

The function g on $[0,1]$ defined by $g(x)=3 x$ is continuous at $x=0$. The function h on $[-1,0]$ defined by $h(x)=-5 x$ is continuous at $x=0$. As $g(0)=0=h(0)$, the Glue Lemma implies that the function u is continuous at $x=0$.
5.27 As the function is continuous at c, the Linking Limit Lemma implies that for every $\varepsilon>0$, a $\delta>0$ exists such that

$$
|f(x)-f(c)|<\varepsilon,
$$

for any x in the interval $(c-\delta, c+\delta)$.
Now let $\varepsilon=f(c)$. Then a $\delta>0$ exists such that for any x in the interval $(c-\delta, c+\delta)$,

$$
|f(x)-f(c)|<f(c) \Longrightarrow-f(c)<f(x)-f(c)<f(c) \Longrightarrow 0<f(x)<2 f(c)
$$

6.1 Assume that $|f(x)| \leq m$ for all $x \in[a, b]$. Then for all $x \in[a, b],-m \leq f(x) \leq m$. So the function is bounded above by m and bounded below by $-m$, That is: the function is bounded.

Assume that the function is bounded. Then numbers ℓ and u exist such that $\ell \leq f(x) \leq u$ for all $x \in[a, b]$. Then for all $x \in[a, b]$,

$$
-\max \{|\ell|,|u|\} \leq|\ell| \leq \ell \leq f(x) \leq u \leq|u| \leq \max \{|\ell|,|u|\}
$$

So if we choose $m=1+\max \{|\ell|,|u|\}$, then $m>0$ and $|f(x)| \leq m$, for all $x \in[a, b]$.
6.2 Because the function f is continuous on the compact interval $[a, b]$, the Theorem of Weierstrass implies that a $c \in[a, b]$ exists such that $f(x) \geq f(c)$ for all $x \in[a, b]$.

Choose $m=f(c)$. Then $m=f(c)>0$, because $c \in[a, b]$.
6.3 The inequality $f(a) f(b)<0$ implies that $f(a)$ and $f(b)$ have an opposite sign (and are non-zero). So 0 is a value between $f(a)$ and $f(b)$.

According to the Intermediate Value Theorem, there exists a $z \in(a, b)$ such that $f(z)=0$.
6.4 According to Example 6, the function f is continuous.

Note that the restriction of the function f to the interval [0, 2] is continuous, that $f(0)=16>0$ and that $f(2)=-6<0$. So by the Intermediate Value Theorem (applied to the restriction of the function f to the interval $[0,2])$ a $\tau \in(0,2)$ exists satisfying $f(\tau)=0$.
The interval $(2,4)$ can be treated in a similar way.
Note that the restriction of the function f to the interval $[-10,0]$ is continuous, that $f(0)=16>0$ and that $f(-10)<0$. So by the Intermediate Value Theorem (applied to the restriction of the function f to the interval $[-10,0])$ a $\tau \in(-10,0)$ exists satisfying $f(\tau)=0$.
6.6 Let f be the function on $(0,1)$ defined by

$$
f(x)=x^{2} .
$$

Then $0<f(x)<1$ for all $x \in(0,1)$. The function f is continuous but there doesn't exist a $c \in(0,1)$ such that $f(c)=c$:

$$
f(x)=x \Longleftrightarrow x^{2}=x \Longleftrightarrow x(x-1)=0 \Longleftrightarrow x=0 \text { or } x=1 .
$$

6.9 Let $a>0$. Then
and

$$
\begin{aligned}
& f(a)=a^{3}+a>a \\
& f(0)=0<a
\end{aligned}
$$

So the Intermediate Value Theorem implies that the equation $f(x)=a$ has a solution, that is: $a \in R_{f}$. As $f(0)=0,0 \in R_{f}$.
Let $a<0$. Then
and

$$
\begin{aligned}
& f(a)=a^{3}+a<a \\
& f(0)=0>a
\end{aligned}
$$

So the Intermediate Value Theorem implies that the equation $f(x)=a$ has a solution, that is: $a \in R_{f}$. In all: $R_{f}=\mathbb{R}$.
1.33 Assume that $f(x)=f\left(x^{\prime}\right)$ for $x, x^{\prime} \geq 0$. Then

$$
f(x)=f\left(x^{\prime}\right) \Longleftrightarrow x^{2}+1=\left(x^{\prime}\right)^{2}+1 \Longleftrightarrow x^{2}=\left(x^{\prime}\right)^{2} \Longleftrightarrow x=x^{\prime}
$$

So the function is invertible.
Since $f(x)=x^{2}+1 \geq 1$ for all $x \geq 0, R_{f} \subset[1, \infty)$. In order to find f^{-1}, we consider, for $y \geq 1$ and $x \geq 0$, the equation

$$
f(x)=y \Longleftrightarrow y=x^{2}+1 \Longleftrightarrow x^{2}=y-1
$$

Obviously, this equation has a solution if and only if $y-1 \geq 0 \Longleftrightarrow y \geq 1$. Further, for $y \geq 1$,

$$
f(x)=y \Longleftrightarrow x^{2}-1 \Longleftrightarrow x=\sqrt{y-1}
$$

Hence, $D_{f^{-1}}=R_{f}=[1, \infty)$ and f^{-1} is the function on $[1, \infty)$, defined by

$$
f^{-1}(y)=\sqrt{1-y}
$$

