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Let (Jcn)zozl be a sequence with positive terms which converges to 0. Then, according to the Arithmetic

Rules for limits of sequences,

o) = P Bl 2 21— f0)

As the sequence (:cn)zo: was chosen arbitrarily, this implies that the function f is continuous at x = 1.

1

Note that
3z ifxz>0

u(xr) = max{—bdz,3x} =
(@) { } {—53: if z <0.

The function g on [0,1] defined by g(x) = 3z is continuous at = 0. The function h on [—1,0] defined
by h(z) = —5x is continuous at x = 0. As g(0) =0 = h(0), the Glue Lemma implies that the function u

is continuous at z = 0.

As the function is continuous at ¢, the Linking Limit Lemma implies that for every € > 0, a § > 0 exists

such that
|f(z) = flo)| <e,

for any x in the interval (¢ — d, ¢+ 9).

Now let € = f(c). Then a § > 0 exists such that for any z in the interval (¢ — §,c + J),

|f (@) = fle)l < fe) = —f(c) < fx) — f(e) < f(e) = 0 < fx) <2f(c).

Assume that |[f(x)| < m for all x € [a,b]. Then for all © € [a,b], —m < f(x) < m. So the function is
bounded above by m and bounded below by —m, That is: the function is bounded.
Assume that the function is bounded. Then numbers ¢ and u exist such that ¢ < f(z) < u for all

x € [a,b]. Then for all z € [a, b],

—max{[{], Jul} <[f] < €< f2) <u < ul < max{[f], |ul}.

So if we choose m = 1 4+ max{|¢|, |u|}, then m > 0 and |f(x)| < m, for all z € [a, b].

Because the function f is continuous on the compact interval [a,b], the Theorem of Weierstrass implies
that a ¢ € [a, b] exists such that f(z) > f(c) for all = € [a, b].
Choose m = f(c). Then m = f(c) > 0, because ¢ € [a, b].

The inequality f(a)f(b) < 0 implies that f(a) and f(b) have an opposite sign (and are non-zero). So 0 is
a value between f(a) and f(b).
According to the Intermediate Value Theorem, there exists a z € (a,b) such that f(z) = 0.
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According to Example 6, the function f is continuous.

Note that the restriction of the function f to the interval [0,2] is continuous, that f(0) = 16 > 0 and
that f(2) = —6 < 0. So by the Intermediate Value Theorem (applied to the restriction of the function f
to the interval [0,2]) a 7 € (0,2) exists satistying f(7) = 0.

The interval (2,4) can be treated in a similar way.

Note that the restriction of the function f to the interval [—10, 0] is continuous, that f(0) = 16 > 0 and
that f(—10) < 0. So by the Intermediate Value Theorem (applied to the restriction of the function f to
the interval [—10,0]) a 7 € (—10,0) exists satisfying f(7) = 0.

Let f be the function on (0,1) defined by
f(z) =22

Then 0 < f(z) < 1 for all z € (0,1). The function f is continuous but there doesn’t exist a ¢ € (0,1)
such that f(c) = ¢

f@)=z <=2’ =s+<=2(r—1)=0<=z=0o0rz=1.

Let a > 0. Then

fla)=a*+a>a

and f(0)=0<a.

So the Intermediate Value Theorem implies that the equation f(z) = a has a solution, that is: a € Ry.
As f(0) =0, 0 € Ry.
Let a < 0. Then

fla)=a*+a<a
and f(0)=0>a.

So the Intermediate Value Theorem implies that the equation f(z) = a has a solution, that is: a € Ry.
In all: Ry =1R.

Assume that f(z) = f(a') for z,2’ > 0. Then

f@)=f@) =2’ +1=)V +1l= 2= @) = z=1
So the function is invertible.
Since f(z) =2+ 1> 1forall z > 0, Ry C [1,00). In order to find f~!, we consider, for y > 1 and
x > 0, the equation

f@)=y<—=y=a?+1=a?=y—1.



Obviously, this equation has a solution if and only if y — 1 > 0 <= y > 1. Further, for y > 1,
f@)=y<e=a?-le=z=/y— L
Hence, Dy-1 = Ry = [1,00) and f~! is the function on [1,00), defined by

) =Vi-y.



