
5.14 Let
(

xn

)

∞

n=1
be a sequence with positive terms which converges to 0. Then, according to the Arithmetic

Rules for limits of sequences,

f(xn) =
x2

n +
√
xn

xn +
√
xn

=
xn

√
xn + 1√

xn + 1
=

1

1
= 1 = f(0).

As the sequence
(

xn

)

∞

n=1
was chosen arbitrarily, this implies that the function f is continuous at x = 1.

5.20 Note that

u(x) = max{−5x, 3x} =

{

3x if x ≥ 0

−5x if x < 0.

The function g on [0, 1] defined by g(x) = 3x is continuous at x = 0. The function h on [−1, 0] defined

by h(x) = −5x is continuous at x = 0. As g(0) = 0 = h(0), the Glue Lemma implies that the function u

is continuous at x = 0.

5.27 As the function is continuous at c, the Linking Limit Lemma implies that for every ε > 0, a δ > 0 exists

such that

|f(x)− f(c)| < ε,

for any x in the interval (c− δ, c+ δ).

Now let ε = f(c). Then a δ > 0 exists such that for any x in the interval (c− δ, c+ δ),

|f(x)− f(c)| < f(c) =⇒ −f(c) < f(x)− f(c) < f(c) =⇒ 0 < f(x) < 2f(c).

6.1 Assume that |f(x)| ≤ m for all x ∈ [a, b]. Then for all x ∈ [a, b], −m ≤ f(x) ≤ m. So the function is

bounded above by m and bounded below by −m, That is: the function is bounded.

Assume that the function is bounded. Then numbers ` and u exist such that ` ≤ f(x) ≤ u for all

x ∈ [a, b]. Then for all x ∈ [a, b],

−max{|`|, |u|} ≤ |`| ≤ ` ≤ f(x) ≤ u ≤ |u| ≤ max{|`|, |u|}.

So if we choose m = 1 +max{|`|, |u|}, then m > 0 and |f(x)| ≤ m, for all x ∈ [a, b].

6.2 Because the function f is continuous on the compact interval [a, b], the Theorem of Weierstrass implies

that a c ∈ [a, b] exists such that f(x) ≥ f(c) for all x ∈ [a, b].

Choose m = f(c). Then m = f(c) > 0, because c ∈ [a, b].

6.3 The inequality f(a)f(b) < 0 implies that f(a) and f(b) have an opposite sign (and are non-zero). So 0 is

a value between f(a) and f(b).

According to the Intermediate Value Theorem, there exists a z ∈ (a, b) such that f(z) = 0.



6.4 According to Example 6, the function f is continuous.

Note that the restriction of the function f to the interval [0, 2] is continuous, that f(0) = 16 > 0 and

that f(2) = −6 < 0. So by the Intermediate Value Theorem (applied to the restriction of the function f

to the interval [0, 2]) a τ ∈ (0, 2) exists satisfying f(τ) = 0.

The interval (2, 4) can be treated in a similar way.

Note that the restriction of the function f to the interval [−10, 0] is continuous, that f(0) = 16 > 0 and

that f(−10) < 0. So by the Intermediate Value Theorem (applied to the restriction of the function f to

the interval [−10, 0]) a τ ∈ (−10, 0) exists satisfying f(τ) = 0.

6.6 Let f be the function on (0, 1) defined by

f(x) = x2.

Then 0 < f(x) < 1 for all x ∈ (0, 1). The function f is continuous but there doesn’t exist a c ∈ (0, 1)

such that f(c) = c:

f(x) = x ⇐⇒ x2 = x ⇐⇒ x(x − 1) = 0 ⇐⇒ x = 0 or x = 1.

6.9 Let a > 0. Then

f(a) = a3 + a > a

f(0) = 0 < a.and

So the Intermediate Value Theorem implies that the equation f(x) = a has a solution, that is: a ∈ Rf .

As f(0) = 0, 0 ∈ Rf .

Let a < 0. Then

f(a) = a3 + a < a

f(0) = 0 > a.and

So the Intermediate Value Theorem implies that the equation f(x) = a has a solution, that is: a ∈ Rf .

In all: Rf = IR.

1.33 Assume that f(x) = f(x′) for x, x′ ≥ 0. Then

f(x) = f(x′) ⇐⇒ x2 + 1 = (x′)2 + 1 ⇐⇒ x2 = (x′)2 ⇐⇒ x = x′.

So the function is invertible.

Since f(x) = x2 + 1 ≥ 1 for all x ≥ 0, Rf ⊂ [1,∞). In order to find f−1, we consider, for y ≥ 1 and

x ≥ 0, the equation

f(x) = y ⇐⇒ y = x2 + 1 ⇐⇒ x2 = y − 1.



Obviously, this equation has a solution if and only if y − 1 ≥ 0 ⇐⇒ y ≥ 1. Further, for y ≥ 1,

f(x) = y ⇐⇒ x2 − 1 ⇐⇒ x =
√

y − 1.

Hence, Df−1 = Rf = [1,∞) and f−1 is the function on [1,∞), defined by

f−1(y) =
√

1− y.


