
1.34 (a) Assume that f(x) = f(x′) for x, x′ ≥ 0. Then

f(x) = f(x′) ⇐⇒ x√
1− x2

=
x′

√

1− (x′)2
⇐⇒ x

√

1− (x′)2 = x′

√

1− x2

⇐⇒ x2
[

1− (x′)2
]

= (x′)2
[

1− x2
]

⇐⇒ x2 − x2(x′)2 = (x′)2 − x2(x′)2

⇐⇒ x2 = (x′)2 ⇐⇒ x = x′.

So the function is invertible.

(b) Since f(x) ≥ 0 for all x ∈ [0, 1), we consider the equation f(x) = y for y ≥ 0 and 0 ≤ x < 1:

f(x) = y ⇐⇒ y =
x√

1− x2
⇐⇒ y2(1 − x2) = x2 ⇐⇒ x2(1 + y2) = y2 ⇐⇒ x2 =

y2

1 + y2
.

Obviously, this equation has a solution for any y ≥ 0. Hence, Df−1 = Rf = [0,∞) and for y ≥ 0,

f(x) = y ⇐⇒ x2 =
y2

1 + y2
⇐⇒ x =

√

y2

1 + y2
.

So and f−1 is the function on [0,∞), defined by

f−1(y) =

√

y2

1 + y2
.

5.16 (a) Note that PS = sinx and that

tanx =
QR

OQ
= QR.

The area of the triangle OPQ equals 1

2
PS · OQ = 1

2
sinx. Furthermore, the area of the circular sector

OPQ is equal to the area of the circle, namely π, multiplied by
x

2π
. Thus the area equals 1

2
x.

The area of the triangle ORQ equals 1

2
QR · OQ = 1

2
tanx.

Since the area of the triangle OPQ is smaller than the area of the the circular sector OPQ which is

smaller than the area of the triangle ORQ, we have

1

2
sinx ≤ 1

2
x ≤ 1

2
tanx.

(b) According to part (a),

sinx ≤ x ≤ tanx =⇒ sinx ≤ x ≤ sinx

cosx
=⇒ 1 ≤ x

sinx
≤ 1

cosx
=⇒ cosx ≤ sinx

x
≤ 1.

(c) If x ∈ (−π/2, 0), then −x ∈ (0, π/2). Hence,

cosx = cos(−x) ≤ sin(−x)

−x
≤ 1 =⇒ cosx ≤ sinx

x
≤ 1.

(d) Let g and h be the functions on (−π/2, π/2) defined by g(x) = cosx, and h(x) = 1, respectively. As the

functions g and h are continuous at 0, and g ≤ f ≤ h (by parts (b)and (c)), the Sandwich Lemma implies

that f is continuous at 0. That is:

lim
x→0

sinx

x
= 1.



6.5 Let f be a continuous function on [a, b]. Define the function h on the interval [a, b], by h(x) = f(x)− x.

(We got the idea of introducing the function h by sketching, as in Figure 2, in one and the same coordinate

system both the graph of f and the line y = x.)

The function h is continuous, h(a) = f(a)−a ≥ 0 and h(b) = f(b)−b ≤ 0. According to the Intermediate

Value Theorem, applied to the function h and the value 0, an x∗ ∈ [a, b] exists such that h(x∗) = 0, in

other words: f(x∗) = x∗.

6.7 The function f on [0, 1] defined by

f(x) =

{

0 if x > 0

1 if x = 0,

is not continuous at 0. Obviously, this function possesses no fixed point.

6.10 We introduce the polynomial function f on the interval [1, 2] defined by

f(x) = x7 + x5 + x− 4.

As f(1) = −1 < 0 and f(2) = 158 > 0, and the function f is continuous, the Intermediate Value Theorem

implies the existence of an x∗ ∈ (1, 2) such that f(x∗) = 0.

Let a, b ∈ (1, 2) with a < b. Then Exercise 2.16 implies that

f(a) = a7 + a5 + a− 4 < b7 + b5 + b− 4 = f(b).

So if x∗∗ ∈ (1, 2) is another zero of the function f , and x∗ < x∗∗, then

0 = f(x∗) < f(x∗∗) = 0,

which is a contradiction. So the function f has a unique zero.

As f(1) < 0, f(1.1) = 1.17+1.15+1.1− 4 = 1.9487171+1.61051+1.1− 4 = 0.6592271 > 0, and because

the function f restricted to the interval [1, 1.1] is continuous, the Intermediate Value Theorem implies

the existence of an x∗ ∈ (1, 1.1) such that f(x∗) = 0.

6.14 The way the exercise has been formulated suggests the use of the Intermediate Value Theorem.

We introduce the function h on [0, 1

2
], defined by

h(x) = f(x)− f(x+ 1

2
).

Note that

h(c) = 0 ⇐⇒ f(c)− f(c+ 1

2
) = 0 ⇐⇒ f(c) = f(c+ 1

2
).

We will show that the function h has a zero.

We will assume that h(0) 6= 0, otherwise the proof is complete.

First of all, the function h is continuous.

This can be explained as follows. The function x 7→ f(x + 1

2
) is the composition of two continuous

functions. Hence, h is the difference of two continuous functions.



Furthermore

h(0) = f(0)− f(1
2
)

h(1
2
) = f(1

2
)− f(1) = f(1

2
)− f(0) = −h(0).and

So the numbers h(0) and h(1
2
) have an opposite sign. In this situation Exercise 3 implies that the function

h has a zero.


