1.34 (a) Assume that f(z) = f(2') for z,2’ > 0. Then

/

— 2?1 - (2)?] = (2')*[1 — 2?]

= 2y/1- (@) =2'V1— a2

So the function is invertible.
(b) Since f(z) > 0 for all x € [0,1), we consider the equation f(z) =y for y >0and 0 <z < 1:
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Obviously, this equation has a solution for any y > 0. Hence, Dy-1 = Ry = [0, 00) and for y > 0,

= y(l-2Y) =2 =21 +¢y°) =y’ =2 =

f(x):y<:>x2:y—2<:>x: v’ .
1+ y? 1+y?

So and f~! is the function on [0, 00), defined by

_ oy
fl(y)— ?3/2

tanx = g—g = QR.

The area of the triangle OPQ equals %PS -0Q = %sin x. Furthermore, the area of the circular sector

5.16 (a) Note that PS = sinz and that

OPQ is equal to the area of the circle, namely 7, multiplied by ; Thus the area equals %:C
T

The area of the triangle ORQ equals %QR -0Q = %tan T.

Since the area of the triangle OPQ is smaller than the area of the the circular sector OPQ which is

smaller than the area of the triangle ORQ), we have

1 1 1
5 sinw < 5T < 5 tanx.

(b) According to part (a),

sinxﬁxﬁtanxﬁsinxﬁxﬁsmx:>1§ - < :>cosx§$ﬂ§1.

cos T sinx ~ cosw T
(¢) If z € (—7/2,0), then —z € (0,7/2). Hence,
cosx = cos(—x) < sin(—z) <1= cosz < S <1.
—z x

(d) Let g and h be the functions on (—7/2,7/2) defined by g(z) = cosz, and h(x) = 1, respectively. As the
functions g and h are continuous at 0, and g < f < h (by parts (b)and (c)), the Sandwich Lemma implies

that f is continuous at 0. That is:
sinx
lim =1.
z—0 X




6.5

6.7

6.10

6.14

Let f be a continuous function on [a, b]. Define the function h on the interval [a,b], by h(z) = f(z) — «.
(We got the idea of introducing the function h by sketching, as in Figure 2, in one and the same coordinate
system both the graph of f and the line y = z.)

The function h is continuous, h(a) = f(a)—a > 0 and h(b) = f(b) —b < 0. According to the Intermediate
Value Theorem, applied to the function h and the value 0, an z* € [a,b] exists such that h(z*) = 0, in

other words: f(z*) = z*.

The function f on [0, 1] defined by

0 ifz>0
f(x)_{l if 2 =0,

is not continuous at 0. Obviously, this function possesses no fixed point.

We introduce the polynomial function f on the interval [1,2] defined by
fx)=a"+2°+2—4.

As f(1) = =1 < 0 and f(2) = 158 > 0, and the function f is continuous, the Intermediate Value Theorem
implies the existence of an z* € (1,2) such that f(z*) = 0.
Let a,b € (1,2) with a < b. Then Exercise 2.16 implies that

fla)=da"+a®+a—-4<b"+b°+b—4=f(b).
So if z** € (1,2) is another zero of the function f, and z* < **, then

0=f(=") < f(z™) =0,

which is a contradiction. So the function f has a unique zero.
As f(1) <0, f(1.1) =117 +1.1° +1.1 — 4 = 1.9487171 + 1.61051 + 1.1 — 4 = 0.6592271 > 0, and because
the function f restricted to the interval [1,1.1] is continuous, the Intermediate Value Theorem implies

the existence of an z* € (1,1.1) such that f(z*) = 0.

The way the exercise has been formulated suggests the use of the Intermediate Value Theorem.

We introduce the function h on [0, 1], defined by

Note that
h(c) =0 f(c) = flc+3) =0<+= f(c) = flc+ 3).

We will show that the function h has a zero.

We will assume that h(0) # 0, otherwise the proof is complete.

First of all, the function h is continuous.

This can be explained as follows. The function z — f(x + %) is the composition of two continuous

functions. Hence, h is the difference of two continuous functions.



Furthermore

and h(z) = f(3) — F(1) = f(3) — F(0) = —n(0).

So the numbers h(0) and h(3) have an opposite sign. In this situation Exercise 3 implies that the function

h has a zero.



