1.34 (a) Assume that $f(x)=f\left(x^{\prime}\right)$ for $x, x^{\prime} \geq 0$. Then

$$
\begin{aligned}
f(x)=f\left(x^{\prime}\right) & \Longleftrightarrow \frac{x}{\sqrt{1-x^{2}}}=\frac{x^{\prime}}{\sqrt{1-\left(x^{\prime}\right)^{2}}} \Longleftrightarrow x \sqrt{1-\left(x^{\prime}\right)^{2}}=x^{\prime} \sqrt{1-x^{2}} \\
& \Longleftrightarrow x^{2}\left[1-\left(x^{\prime}\right)^{2}\right]=\left(x^{\prime}\right)^{2}\left[1-x^{2}\right] \\
& \Longleftrightarrow x^{2}-x^{2}\left(x^{\prime}\right)^{2}=\left(x^{\prime}\right)^{2}-x^{2}\left(x^{\prime}\right)^{2} \\
& \Longleftrightarrow x^{2}=\left(x^{\prime}\right)^{2} \Longleftrightarrow x=x^{\prime}
\end{aligned}
$$

So the function is invertible.
(b) Since $f(x) \geq 0$ for all $x \in[0,1)$, we consider the equation $f(x)=y$ for $y \geq 0$ and $0 \leq x<1$ :

$$
f(x)=y \Longleftrightarrow y=\frac{x}{\sqrt{1-x^{2}}} \Longleftrightarrow y^{2}\left(1-x^{2}\right)=x^{2} \Longleftrightarrow x^{2}\left(1+y^{2}\right)=y^{2} \Longleftrightarrow x^{2}=\frac{y^{2}}{1+y^{2}}
$$

Obviously, this equation has a solution for any $y \geq 0$. Hence, $D_{f^{-1}}=R_{f}=[0, \infty)$ and for $y \geq 0$,

$$
f(x)=y \Longleftrightarrow x^{2}=\frac{y^{2}}{1+y^{2}} \Longleftrightarrow x=\sqrt{\frac{y^{2}}{1+y^{2}}}
$$

So and $f^{-1}$ is the function on $[0, \infty)$, defined by

$$
f^{-1}(y)=\sqrt{\frac{y^{2}}{1+y^{2}}}
$$

5.16 (a) Note that $P S=\sin x$ and that

$$
\tan x=\frac{Q R}{O Q}=Q R
$$

The area of the triangle $O P Q$ equals $\frac{1}{2} P S \cdot O Q=\frac{1}{2} \sin x$. Furthermore, the area of the circular sector $O P Q$ is equal to the area of the circle, namely $\pi$, multiplied by $\frac{x}{2 \pi}$. Thus the area equals $\frac{1}{2} x$.
The area of the triangle $O R Q$ equals $\frac{1}{2} Q R \cdot O Q=\frac{1}{2} \tan x$.
Since the area of the triangle $O P Q$ is smaller than the area of the circular sector $O P Q$ which is smaller than the area of the triangle $O R Q$, we have

$$
\frac{1}{2} \sin x \leq \frac{1}{2} x \leq \frac{1}{2} \tan x
$$

(b) According to part (a),

$$
\sin x \leq x \leq \tan x \Longrightarrow \sin x \leq x \leq \frac{\sin x}{\cos x} \Longrightarrow 1 \leq \frac{x}{\sin x} \leq \frac{1}{\cos x} \Longrightarrow \cos x \leq \frac{\sin x}{x} \leq 1
$$

(c) If $x \in(-\pi / 2,0)$, then $-x \in(0, \pi / 2)$. Hence,

$$
\cos x=\cos (-x) \leq \frac{\sin (-x)}{-x} \leq 1 \Longrightarrow \cos x \leq \frac{\sin x}{x} \leq 1
$$

(d) Let $g$ and $h$ be the functions on $(-\pi / 2, \pi / 2)$ defined by $g(x)=\cos x$, and $h(x)=1$, respectively. As the functions $g$ and $h$ are continuous at 0 , and $g \leq f \leq h$ (by parts (b)and (c)), the Sandwich Lemma implies that $f$ is continuous at 0 . That is:

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

6.5 Let $f$ be a continuous function on $[a, b]$. Define the function $h$ on the interval $[a, b]$, by $h(x)=f(x)-x$. (We got the idea of introducing the function $h$ by sketching, as in Figure 2, in one and the same coordinate system both the graph of $f$ and the line $y=x$.)
The function $h$ is continuous, $h(a)=f(a)-a \geq 0$ and $h(b)=f(b)-b \leq 0$. According to the Intermediate Value Theorem, applied to the function $h$ and the value 0 , an $x^{*} \in[a, b]$ exists such that $h\left(x^{*}\right)=0$, in other words: $f\left(x^{*}\right)=x^{*}$.
6.7 The function $f$ on $[0,1]$ defined by

$$
f(x)= \begin{cases}0 & \text { if } x>0 \\ 1 & \text { if } x=0\end{cases}
$$

is not continuous at 0 . Obviously, this function possesses no fixed point.
6.10 We introduce the polynomial function $f$ on the interval $[1,2]$ defined by

$$
f(x)=x^{7}+x^{5}+x-4
$$

As $f(1)=-1<0$ and $f(2)=158>0$, and the function $f$ is continuous, the Intermediate Value Theorem implies the existence of an $x^{*} \in(1,2)$ such that $f\left(x^{*}\right)=0$.

Let $a, b \in(1,2)$ with $a<b$. Then Exercise 2.16 implies that

$$
f(a)=a^{7}+a^{5}+a-4<b^{7}+b^{5}+b-4=f(b)
$$

So if $x^{* *} \in(1,2)$ is another zero of the function $f$, and $x^{*}<x^{* *}$, then

$$
0=f\left(x^{*}\right)<f\left(x^{* *}\right)=0
$$

which is a contradiction. So the function $f$ has a unique zero.
As $f(1)<0, f(1.1)=1.1^{7}+1.1^{5}+1.1-4=1.9487171+1.61051+1.1-4=0.6592271>0$, and because the function $f$ restricted to the interval $[1,1.1]$ is continuous, the Intermediate Value Theorem implies the existence of an $x^{*} \in(1,1.1)$ such that $f\left(x^{*}\right)=0$.
6.14 The way the exercise has been formulated suggests the use of the Intermediate Value Theorem.

We introduce the function $h$ on $\left[0, \frac{1}{2}\right]$, defined by

$$
h(x)=f(x)-f\left(x+\frac{1}{2}\right)
$$

Note that

$$
h(c)=0 \Longleftrightarrow f(c)-f\left(c+\frac{1}{2}\right)=0 \Longleftrightarrow f(c)=f\left(c+\frac{1}{2}\right)
$$

We will show that the function $h$ has a zero.
We will assume that $h(0) \neq 0$, otherwise the proof is complete.
First of all, the function $h$ is continuous.
This can be explained as follows. The function $x \mapsto f\left(x+\frac{1}{2}\right)$ is the composition of two continuous functions. Hence, $h$ is the difference of two continuous functions.

Furthermore

$$
\begin{aligned}
h(0) & =f(0)-f\left(\frac{1}{2}\right) \\
\text { and } \quad & h\left(\frac{1}{2}\right)
\end{aligned}=f\left(\frac{1}{2}\right)-f(1)=f\left(\frac{1}{2}\right)-f(0)=-h(0) .
$$

So the numbers $h(0)$ and $h\left(\frac{1}{2}\right)$ have an opposite sign. In this situation Exercise 3 implies that the function $h$ has a zero.

