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Suppose that the function f is neither positive nor negative on the interval [a,b]. Then there exist
c1,¢2 € [a,b] such that f(c1) <0 and f(c2) > 0. Say, ¢1 < ca.

Since the restriction of the function f to the compact interval [c1, ¢2] is continuous and f(c1)f(ec2) < 0,
the Intermediate Value Theorem implies the existence of a 7 € [c1, ¢o] satisfying f(7) = 0. This is in

contradiction with the data of the exercise.

As lim1 (22 —1) =0 and lim1 vz +1 =+/2, the Arithmetic Rules for limits of functions imply that
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n— 1s in fact the alternating sequence. As this sequence diverges, the
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limit lim sin — doesn’t exist.
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The sequences (:cn)oo , and (yn)flo:l defined by
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respectively, converge to 1, whereas
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Hence, the function r is not continuous at z = 1.

According to Example 9, the function h is not continuous if £ = 1.
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For the case £ # 1, we choose the sequence (:cn)zo_l defined by x, = —. This sequence converges to 0,
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whereas
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This proves that A is not continuous at 0.



The graph of the function & is presented below.

7.7 Let f be a function defined on an interval (—oo, a) and let £ be some number. We say that f(x) converges
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to £ when —z becomes large, if for every € > 0 there exists a number H such that

[f(z) =] <e,

whenever x < H. This is denoted by lim f(z) =
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We will prove that lim \/_ a:

Let € > 0. Note that for x >0
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Since, for x > 0, — < ¢ <= x > —, we choose H = —. Then for all z > H
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This proves that lim Vo -

of the function g¢.

= —1. Hence y = —1 is a horizontal asymptote (at infinity) of the graph

Let € > 0. Note that for z < —1, 22 > —x, so that
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Since, for z < —1, 4/ —— <& <=z < — =, we choose H = min{—l,——Q}. Then for all x < H
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7.13 Let (acn)zozl be a sequence in I\ {¢} which converges to ¢. Then f(x,) — ¢ as n — co. Since f(z,) > 0,

Theorem 3.1 implies that ¢ > 0.

7.15 Observe that for x > 1,
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‘1—x+\/12—2x+3|<i<5.
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This proves that lim h(z) = 0 or: the line y = 0 is a horizontal asymptote at infinity.
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Note that for x < 0,
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This proves that lim [h(x)— (2—2z)] = 0 or: the line y = 2— 2z is a linear asymptote at minus infinity.
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