6.11 Suppose that the function f is neither positive nor negative on the interval $[a, b]$. Then there exist $c_{1}, c_{2} \in[a, b]$ such that $f\left(c_{1}\right)<0$ and $f\left(c_{2}\right)>0$. Say, $c_{1}<c_{2}$.
Since the restriction of the function f to the compact interval $\left[c_{1}, c_{2}\right]$ is continuous and $f\left(c_{1}\right) f\left(c_{2}\right)<0$, the Intermediate Value Theorem implies the existence of a $\tau \in\left[c_{1}, c_{2}\right]$ satisfying $f(\tau)=0$. This is in contradiction with the data of the exercise.
7.1 As $\lim _{x \rightarrow 1}\left(x^{2}-1\right)=0$ and $\lim _{x \rightarrow 1} \sqrt{x+1}=\sqrt{2}$, the Arithmetic Rules for limits of functions imply that

$$
\lim _{x \rightarrow 1}\left(x^{2}-1\right) \sqrt{x+1}=\left[\lim _{x \rightarrow 1}\left(x^{2}-1\right)\right] \cdot\left[\lim _{x \rightarrow 1} \sqrt{x+1}\right]=0 \cdot \sqrt{2}=0
$$

7.4 The sequence $\left(x_{n}\right)_{n=1}^{\infty}$ defined by

$$
x_{n}=\frac{2}{(2 n-1) \pi}
$$

converges to 0 , whereas

$$
\begin{aligned}
& \sin \frac{1}{x_{1}}=\sin \frac{\pi}{2}=1 \\
& \sin \frac{1}{x_{2}}=\sin \frac{3 \pi}{2}=-1 \\
& \sin \frac{1}{x_{3}}=\sin \frac{5 \pi}{2}=1 \\
& \sin \frac{1}{x_{4}}=\sin \frac{7 \pi}{2}=-1
\end{aligned}
$$

So the sequence of images $\left(\sin \frac{1}{x_{n}}\right)_{n=1}^{\infty}$ is in fact the alternating sequence. As this sequence diverges, the limit $\lim _{x \downarrow 0} \sin \frac{1}{x}$ doesn't exist.
7.5 The sequences $\left(x_{n}\right)_{n=1}^{\infty}$ and $\left(y_{n}\right)_{n=1}^{\infty}$ defined by

$$
x_{n}=1+\frac{1}{n} \quad \text { and } \quad y_{n}=1-\frac{1}{n}
$$

respectively, converge to 1 , whereas

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} r\left(x_{n}\right)=\lim _{n \rightarrow \infty}\left\{\left(1+\frac{1}{n}\right)^{2}+1\right\}=2 \\
& \lim _{n \rightarrow \infty} r\left(y_{n}\right)=\lim _{n \rightarrow \infty}\left(-1+\frac{1}{n}-1\right\}=-2
\end{aligned}
$$

Hence, the function r is not continuous at $x=1$.
7.6 According to Example 9, the function h is not continuous if $\ell=1$.

For the case $\ell \neq 1$, we choose the sequence $\left(x_{n}\right)_{n=1}^{\infty}$ defined by $x_{n}=\frac{1}{n}$. This sequence converges to 0 , whereas

$$
\lim _{n \rightarrow \infty} h\left(x_{n}\right)=\lim _{n \rightarrow \infty} \frac{\left|\frac{1}{n}\right|}{\frac{1}{n}}=1 \neq h(0) .
$$

This proves that h is not continuous at 0 .

The graph of the function h is presented below.

7.7 Let f be a function defined on an interval $(-\infty, a)$ and let ℓ be some number. We say that $f(x)$ converges to ℓ when $-x$ becomes large, if for every $\varepsilon>0$ there exists a number H such that

$$
|f(x)-\ell|<\varepsilon,
$$

whenever $x<H$. This is denoted by $\lim _{x \rightarrow-\infty} f(x)=\ell$.
7.8 We will prove that $\lim _{x \rightarrow \infty} \frac{\sqrt{x}-x}{\sqrt{x}+x}=-1$.

Let $\varepsilon>0$. Note that for $x>0$

$$
\left|\frac{\sqrt{x}-x}{\sqrt{x}+x}-(-1)\right|=\left|\frac{2 \sqrt{x}}{\sqrt{x}+x}\right|=\frac{2}{1+\sqrt{x}}<\frac{2}{\sqrt{x}} .
$$

Since, for $x>0, \frac{2}{\sqrt{x}}<\varepsilon \Longleftrightarrow x>\frac{4}{\varepsilon^{2}}$, we choose $H=\frac{4}{\varepsilon^{2}}$. Then for all $x>H$

$$
\left|\frac{\sqrt{x}-x}{\sqrt{x}+x}-(-1)\right|<\frac{2}{\sqrt{x}}<\varepsilon
$$

This proves that $\lim _{x \rightarrow \infty} \frac{\sqrt{x}-x}{\sqrt{x}+x}=-1$. Hence $y=-1$ is a horizontal asymptote (at infinity) of the graph of the function g.
7.9 Let $\varepsilon>0$. Note that for $x<-1, x^{2}>-x$, so that

$$
\left|\frac{\sqrt{1-x}}{x}-0\right|=\frac{\sqrt{1-x}}{-x}=\sqrt{\frac{1}{x^{2}}(1-x)}=\sqrt{\frac{1}{x^{2}}-\frac{1}{x}}<\sqrt{-\frac{2}{x}} .
$$

Since, for $x<-1, \sqrt{-\frac{2}{x}}<\varepsilon \Longleftrightarrow x<-\frac{2}{\varepsilon^{2}}$, we choose $H=\min \left\{-1,-\frac{2}{\varepsilon^{2}}\right\}$. Then for all $x<H$

$$
\left|\frac{\sqrt{1-x}}{x}-0\right|<\sqrt{-\frac{2}{x}}<\varepsilon
$$

This proves that $\lim _{x \rightarrow-\infty} \frac{\sqrt{1-x}}{x}=0$.
7.13 Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence in $I \backslash\{c\}$ which converges to c. Then $f\left(x_{n}\right) \rightarrow \ell$ as $n \rightarrow \infty$. Since $f\left(x_{n}\right) \geq 0$, Theorem 3.1 implies that $\ell \geq 0$.
7.15 Observe that for $x>1$,

$$
\begin{aligned}
\left|1-x+\sqrt{x^{2}-2 x+3}\right| & =\left|\left[1-x+\sqrt{x^{2}-2 x+3}\right] \frac{1-x-\sqrt{x^{2}-2 x+3}}{1-x-\sqrt{x^{2}-2 x+3}}\right| \\
& =\left|\frac{(1-x)^{2}-\left(x^{2}-2 x+3\right)}{1-x-\sqrt{x^{2}-2 x+3}}\right|=\left|\frac{1-2 x+x^{2}-x^{2}+2 x-3}{1-x-\sqrt{x^{2}-2 x+3}}\right| \\
& =\left|\frac{-2}{1-x-\sqrt{x^{2}-2 x+3}}\right|=\frac{2}{\sqrt{x^{2}-2 x+3}+x-1}<\frac{2}{x-1}
\end{aligned}
$$

Let $\varepsilon>0$. As $\frac{2}{x-1}<\varepsilon \Longleftrightarrow x-1>\frac{2}{\varepsilon} \Longleftrightarrow x>1+\frac{2}{\varepsilon}$, we choose $H=\max \left\{1,1+\frac{2}{\varepsilon}\right\}=1+\frac{2}{\varepsilon}$. Then, for $x>H$,

$$
\left|1-x+\sqrt{x^{2}-2 x+3}\right|<\frac{2}{x-1}<\varepsilon .
$$

This proves that $\lim _{x \rightarrow \infty} h(x)=0$ or: the line $y=0$ is a horizontal asymptote at infinity.
Note that for $x<0$,

$$
\begin{aligned}
|h(x)-(2-2 x)| & =1-x+\sqrt{x^{2}-2 x+3}-2+2 x\left|=\left|x-1+\sqrt{x^{2}-2 x+3}\right|\right. \\
& =\left|\left[x-1+\sqrt{x^{2}-2 x+3}\right] \frac{x-1-\sqrt{x^{2}-2 x+3}}{x-1-\sqrt{x^{2}-2 x+3}}\right| \\
& =\left|\frac{(x-1)^{2}-\left(x^{2}-2 x+3\right)}{x-1-\sqrt{x^{2}-2 x+3}}\right|=\left|\frac{x^{2}-2 x+1-x^{2}+2 x-3}{x-1-\sqrt{x^{2}-2 x+3}}\right| \\
& =\frac{2}{1-x+\sqrt{x^{2}-2 x+3}}<\frac{2}{1-x} .
\end{aligned}
$$

Let $\varepsilon>0$. As $\frac{2}{1-x}<\varepsilon \Longleftrightarrow 1-x>\frac{2}{\varepsilon} \Longleftrightarrow x<1-\frac{2}{\varepsilon}$, we choose $L=\min \left\{0,1-\frac{2}{\varepsilon}\right\}$. Then, for $x<L$,

$$
\left|1-x+\sqrt{x^{2}-2 x+3}\right|<\frac{2}{1-x}<\varepsilon .
$$

This proves that $\lim _{x \rightarrow \infty}[h(x)-(2-2 x)]=0$ or: the line $y=2-2 x$ is a linear asymptote at minus infinity.

