
6.11 Suppose that the function f is neither positive nor negative on the interval [a, b]. Then there exist

c1, c2 ∈ [a, b] such that f(c1) < 0 and f(c2) > 0. Say, c1 < c2.

Since the restriction of the function f to the compact interval [c1, c2] is continuous and f(c1)f(c2) < 0,

the Intermediate Value Theorem implies the existence of a τ ∈ [c1, c2] satisfying f(τ) = 0. This is in

contradiction with the data of the exercise.
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limit lim
x↓0

sin
1

x
doesn’t exist.

7.5 The sequences
(

xn

)∞

n=1
and

(

yn
)∞

n=1
defined by

xn = 1 +
1

n
and yn = 1− 1

n
,

respectively, converge to 1, whereas

lim
n→∞

r(xn) = lim
n→∞

{

(

1 +
1

n

)2
+ 1

}

= 2

lim
n→∞

r(yn) = lim
n→∞

(

−1 +
1

n
− 1

}

= −2.and

Hence, the function r is not continuous at x = 1.

7.6 According to Example 9, the function h is not continuous if ` = 1.
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This proves that h is not continuous at 0.



The graph of the function h is presented below.
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7.7 Let f be a function defined on an interval (−∞, a) and let ` be some number. We say that f(x) converges

to ` when −x becomes large, if for every ε > 0 there exists a number H such that

|f(x)− `| < ε,

whenever x < H . This is denoted by lim
x→−∞

f(x) = `.

7.8 We will prove that lim
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∣

∣

∣

∣

√
x− x√
x+ x

− (−1)

∣

∣

∣

∣

=

∣

∣

∣

∣

2
√
x√

x+ x

∣

∣

∣

∣

=
2

1 +
√
x
<

2√
x
.

Since, for x > 0,
2√
x
< ε ⇐⇒ x >

4

ε2
, we choose H =

4

ε2
. Then for all x > H

∣

∣

∣

∣

√
x− x√
x+ x

− (−1)

∣

∣

∣

∣

<
2√
x
< ε.

This proves that lim
x→∞
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= −1. Hence y = −1 is a horizontal asymptote (at infinity) of the graph

of the function g.

7.9 Let ε > 0. Note that for x < −1, x2 > −x, so that
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7.13 Let
(

xn

)∞

n=1
be a sequence in I \ {c} which converges to c. Then f(xn) → ` as n → ∞. Since f(xn) ≥ 0,

Theorem 3.1 implies that ` ≥ 0.
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This proves that lim
x→∞

h(x) = 0 or: the line y = 0 is a horizontal asymptote at infinity.

Note that for x < 0,
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This proves that lim
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= 0 or: the line y = 2−2x is a linear asymptote at minus infinity.


