$$h(x) = f(x) - g(x) = x^2 - g(x).$$

As the function g is continuous, the function h is continuous too. Furthermore,

$$h(0) = 0 - g(0) = -g(0) \le 0$$

and

$$h(1) = 1 - g(1) \ge 1 - 1 = 0.$$

If h(0) = 0 or h(1) = 0, then the equation $h(x) = 0 \iff g(x) = x^2$ has a solution.

If h(0) < 0 and h(1) > 0, then the Intermediate Value Theorem applied to the function h implies that the equation $h(x) = 0 \iff g(x) = x^2$ has a solution.

7.2 Consider the sequence

$$\left(1 + \frac{1}{n}\right)_{n=1}^{\infty}.$$

This sequence in D_f converges to 1 and $1 + \frac{1}{n} \neq 1$ for all $n \in \mathbb{N}$.

Now

$$f(1+\frac{1}{n}) = \frac{\sqrt{1+\frac{1}{n}}}{1-\sqrt{1+\frac{1}{n}}} = \frac{\sqrt{\frac{n+1}{n}}}{1-\sqrt{\frac{n+1}{n}}} = \frac{\sqrt{n+1}}{\sqrt{n}-\sqrt{n+1}} \cdot \frac{\sqrt{n}+\sqrt{n+1}}{\sqrt{n}+\sqrt{n+1}}$$
$$= -(\sqrt{n}\sqrt{n+1}+n+1) = -(\sqrt{n^2+n}+n+1) < -n.$$

Hence the sequence $\left(f(1+\frac{1}{n})\right)_{n=1}^{\infty}$ is not bounded below. So it is definitely not convergent (as you know each convergent sequence is bounded). According to the definition, the limit of f(x) as $x \to 1$ doesn't exist.

7.3 Assume that $\lim_{x \downarrow c} f(x) = \ell$ and $\lim_{x \uparrow c} f(x) = \ell$. Let $(x_n)_{n=1}^{\infty}$ be a sequence converging to c such that $x_n \neq c$ for all n.

We have to prove that $\lim_{n\to\infty} f(x_n) = \ell$.

We will suppose that the sequence $(x_n)_{n=1}^{\infty}$ has an infinite number of terms larger than c and an infinite number of terms smaller than c. (Otherwise, the proof is simple.)

Since $x_n \to c$ as $n \to \infty$, the subsequence of $(x_n)_{n=1}^{\infty}$ consisting of the terms larger than c converges to c too. Because $\lim_{x \downarrow c} f(x) = \ell$, a number N' exists such that

$$|f(x_n) - \ell| < \varepsilon,$$

whenever n > N' and x_n is larger than c.

Similarly, a number N'' exists such that

$$|f(x_n) - \ell| < \varepsilon$$
,

whenever n > N' and x_n is smaller than c.

By consequence, for all $n > N = \max\{N', N''\}$,

$$|f(x_n) - \ell| < \varepsilon.$$

In other words: $\lim_{n\to\infty} f(x_n) = \ell$. As the sequence $(x_n)_{n=1}^{\infty}$ was arbitrarily chosen, this proves that $\lim_{x\to c} f(x) = \ell$.

7.10 Assume that the limit exists, say $\lim_{x\to\infty} \frac{3+x}{\sqrt{x}} = \ell$, where $\ell \ge 0$.

Then corresponding to $\varepsilon = 1$ a number H exists such that for all x > H

$$\left| \frac{3+x}{\sqrt{x}} - \ell \right| < 1 \Longrightarrow \frac{3+x}{\sqrt{x}} < 1 + \ell.$$

If however $x > (\ell + 1)^2$, then

$$\frac{3+x}{\sqrt{x}} > \frac{x}{\sqrt{x}} = \sqrt{x} > 1 + \ell.$$

Since we have a contradiction, the limit doesn't exist.

7.12 For every x > 0,

$$|z(x) - (x+1)| = |\sqrt{1+x^2} + 1 - x - 1| = |\sqrt{1+x^2} - x| = \left| \left[\sqrt{1+x^2} - x \right] \frac{\sqrt{1+x^2} + x}{\sqrt{1+x^2} + x} \right|$$
$$= \left| \frac{(1+x^2) - x^2}{\sqrt{1+x^2} + x} \right| = \frac{1}{\sqrt{1+x^2} + x} < \frac{1}{x}.$$

Let $\varepsilon > 0$. Take $H = \varepsilon^{-1}$. Then for x > H,

$$|z(x) - (x+1)| < \frac{1}{x} < \frac{1}{H} = \varepsilon.$$

This shows that y = x + 1 is a linear asymptote of the function z at infinity.

For every x < 0,

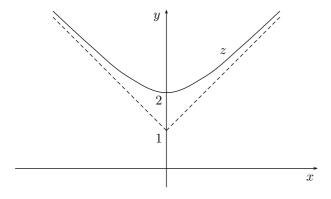
$$|z(x) - (1 - x)| = |\sqrt{1 + x^2} + 1 - 1 + x| = |\sqrt{1 + x^2} + x| = \left| \left[\sqrt{1 + x^2} + x \right] \frac{\sqrt{1 + x^2} - x}{\sqrt{1 + x^2} - x} \right|$$
$$= \left| \frac{(1 + x^2) - x^2}{\sqrt{1 + x^2} - x} \right| = \frac{1}{\sqrt{1 + x^2} - x} < \frac{1}{-x}.$$

Let $\varepsilon > 0$. Take $H = -\varepsilon^{-1}$. Then for x < H,

$$|z(x) - (x+1)| < \frac{1}{-x} < \frac{1}{-H} = \varepsilon.$$

This shows that y = 1 - x is a linear asymptote of the function z at minus infinity.

The graph of the function z is represented below.



7.14 The sequence $(x_n)_{n=1}^{\infty}$ with $x_n = \frac{1}{n}$ converges to 0, whereas

$$g(x_n) = \frac{\sqrt{1 + \frac{1}{n}} - 1}{\frac{1}{n}} = n\sqrt{1 + \frac{1}{n}} - n = \sqrt{n^2 + n} - n$$
$$= \left[\sqrt{n^2 + n} - n\right] \frac{\sqrt{n^2 + n} + n}{\sqrt{n^2 + n} + n} = \frac{n^2 + n - n^2}{\sqrt{n^2 + n} + n} = \frac{1}{\sqrt{1 + \frac{1}{n}} + 1}.$$

Hence, $\lim_{n\to\infty} g(x_n) = \frac{1}{2}$.

The sequence $(y_n)_{n=1}^{\infty}$ with $y_n = -\frac{1}{n}$ converges to 0, whereas

$$g(y_n) = \frac{\sqrt{1 - \frac{1}{n}} - 1}{\frac{1}{n}} = n\sqrt{1 - \frac{1}{n}} - n = \sqrt{n^2 - n} - n$$
$$= \left[\sqrt{n^2 - n} - n\right] \frac{\sqrt{n^2 - n} + n}{\sqrt{n^2 - n} + n} = \frac{n^2 - n - n^2}{\sqrt{n^2 - n} + n} = -\frac{1}{\sqrt{1 - \frac{1}{n}} + 1}.$$

Hence, $\lim_{n\to\infty} g(y_n) = -\frac{1}{2}$.

The foregoing implies that the limit $\lim_{x\to 0} g(x)$ doesn't exist.

7.18 (a) Because $\lim_{x\to-\infty} f(x)=0$, for $\varepsilon=f(0)>0$ an $H_1\in\mathbb{R}$ exists such that

$$f(x) < \varepsilon = f(0),$$

whenever $x < H_1$. This however means that $0 > H_1$.

Because $\lim_{x\to\infty} f(x) = 0$, an $H_2 > H_1 \in \mathbb{R}$ exists such that

$$f(x) < \varepsilon = f(0),$$

whenever $x > H_2$. This however means that $0 < H_2$.

(b) The function f restricted to the compact interval $[H_1, H_2]$ is continuous. According to the Theorem of Weierstrass, the function f has a maximum f(d) on the interval $[H_1, H_2]$.

Then, however, f(d) is also the maximum of the function f on \mathbb{R} . This can be seen as follows:

$$f(d) \begin{cases} \geq f(0) > f(x) & \text{if } x < H_1 \\ \geq f(x) & \text{if } x \in [H_1, H_2] \\ \geq f(0) > f(x) & \text{if } x > H_2. \end{cases}$$