6.12 Let h be the function on $[0,1]$ defined by

$$
h(x)=f(x)-g(x)=x^{2}-g(x) .
$$

As the function g is continuous, the function h is continuous too.
Furthermore,
and

$$
h(0)=0-g(0)=-g(0) \leq 0
$$

$$
h(1)=1-g(1) \geq 1-1=0 .
$$

If $h(0)=0$ or $h(1)=0$, then the equation $h(x)=0 \Longleftrightarrow g(x)=x^{2}$ has a solution.
If $h(0)<0$ and $h(1)>0$, then the Intermediate Value Theorem applied to the function h implies that the equation $h(x)=0 \Longleftrightarrow g(x)=x^{2}$ has a solution.
7.2 Consider the sequence

$$
\left(1+\frac{1}{n}\right)_{n=1}^{\infty} .
$$

This sequence in D_{f} converges to 1 and $1+\frac{1}{n} \neq 1$ for all $n \in \mathbb{N}$.
Now

$$
\begin{aligned}
f\left(1+\frac{1}{n}\right) & =\frac{\sqrt{1+\frac{1}{n}}}{1-\sqrt{1+\frac{1}{n}}}=\frac{\sqrt{\frac{n+1}{n}}}{1-\sqrt{\frac{n+1}{n}}}=\frac{\sqrt{n+1}}{\sqrt{n}-\sqrt{n+1}} \cdot \frac{\sqrt{n}+\sqrt{n+1}}{\sqrt{n}+\sqrt{n+1}} \\
& =-(\sqrt{n} \sqrt{n+1}+n+1)=-\left(\sqrt{n^{2}+n}+n+1\right)<-n .
\end{aligned}
$$

Hence the sequence $\left(f\left(1+\frac{1}{n}\right)\right)_{n=1}^{\infty}$ is not bounded below. So it is definitely not convergent (as you know each convergent sequence is bounded). According to the definition, the limit of $f(x)$ as $x \rightarrow 1$ doesn't exist.
7.3 Assume that $\lim _{x \downarrow c} f(x)=\ell$ and $\lim _{x \uparrow c} f(x)=\ell$.

Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence converging to c such that $x_{n} \neq c$ for all n.
We have to prove that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\ell$.
We will suppose that the sequence $\left(x_{n}\right)_{n=1}^{\infty}$ has an infinite number of terms larger than c and an infinite number of terms smaller than c. (Otherwise, the proof is simple.)
Since $x_{n} \rightarrow c$ as $n \rightarrow \infty$, the subsequence of $\left(x_{n}\right)_{n=1}^{\infty}$ consisting of the terms larger than c converges to c too. Because $\lim _{x \downarrow c} f(x)=\ell$, a number N^{\prime} exists such that

$$
\left|f\left(x_{n}\right)-\ell\right|<\varepsilon,
$$

whenever $n>N^{\prime}$ and x_{n} is larger than c.
Similarly, a number $N^{\prime \prime}$ exists such that

$$
\left|f\left(x_{n}\right)-\ell\right|<\varepsilon,
$$

whenever $n>N^{\prime}$ and x_{n} is smaller than c.

By consequence, for all $n>N=\max \left\{N^{\prime}, N^{\prime \prime}\right\}$,

$$
\left|f\left(x_{n}\right)-\ell\right|<\varepsilon .
$$

In other words: $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\ell$. As the sequence $\left(x_{n}\right)_{n=1}^{\infty}$ was arbitrarily chosen, this proves that $\lim _{x \rightarrow c} f(x)=\ell$.
7.10 Assume that the limit exists, say $\lim _{x \rightarrow \infty} \frac{3+x}{\sqrt{x}}=\ell$, where $\ell \geq 0$.

Then corresponding to $\varepsilon=1$ a number H exists such that for all $x>H$

$$
\left|\frac{3+x}{\sqrt{x}}-\ell\right|<1 \Longrightarrow \frac{3+x}{\sqrt{x}}<1+\ell
$$

If however $x>(\ell+1)^{2}$, then

$$
\frac{3+x}{\sqrt{x}}>\frac{x}{\sqrt{x}}=\sqrt{x}>1+\ell
$$

Since we have a contradiction, the limit doesn't exist.
7.12 For every $x>0$,

$$
\begin{aligned}
|z(x)-(x+1)| & =\left|\sqrt{1+x^{2}}+1-x-1\right|=\left|\sqrt{1+x^{2}}-x\right|=\left|\left[\sqrt{1+x^{2}}-x\right] \frac{\sqrt{1+x^{2}}+x}{\sqrt{1+x^{2}}+x}\right| \\
& =\left|\frac{\left(1+x^{2}\right)-x^{2}}{\sqrt{1+x^{2}}+x}\right|=\frac{1}{\sqrt{1+x^{2}}+x}<\frac{1}{x}
\end{aligned}
$$

Let $\varepsilon>0$. Take $H=\varepsilon^{-1}$. Then for $x>H$,

$$
|z(x)-(x+1)|<\frac{1}{x}<\frac{1}{H}=\varepsilon
$$

This shows that $y=x+1$ is a linear asymptote of the function z at infinity.
For every $x<0$,

$$
\begin{aligned}
|z(x)-(1-x)| & =\left|\sqrt{1+x^{2}}+1-1+x\right|=\left|\sqrt{1+x^{2}}+x\right|=\left|\left[\sqrt{1+x^{2}}+x\right] \frac{\sqrt{1+x^{2}}-x}{\sqrt{1+x^{2}}-x}\right| \\
& =\left|\frac{\left(1+x^{2}\right)-x^{2}}{\sqrt{1+x^{2}}-x}\right|=\frac{1}{\sqrt{1+x^{2}}-x}<\frac{1}{-x}
\end{aligned}
$$

Let $\varepsilon>0$. Take $H=-\varepsilon^{-1}$. Then for $x<H$,

$$
|z(x)-(x+1)|<\frac{1}{-x}<\frac{1}{-H}=\varepsilon
$$

This shows that $y=1-x$ is a linear asymptote of the function z at minus infinity.
The graph of the function z is represented below.

7.14 The sequence $\left(x_{n}\right)_{n=1}^{\infty}$ with $x_{n}=\frac{1}{n}$ converges to 0 , whereas

$$
\begin{aligned}
g\left(x_{n}\right) & =\frac{\sqrt{1+\frac{1}{n}}-1}{\frac{1}{n}}=n \sqrt{1+\frac{1}{n}}-n=\sqrt{n^{2}+n}-n \\
& =\left[\sqrt{n^{2}+n}-n\right] \frac{\sqrt{n^{2}+n}+n}{\sqrt{n^{2}+n}+n}=\frac{n^{2}+n-n^{2}}{\sqrt{n^{2}+n}+n}=\frac{1}{\sqrt{1+\frac{1}{n}}+1}
\end{aligned}
$$

Hence, $\lim _{n \rightarrow \infty} g\left(x_{n}\right)=\frac{1}{2}$.
The sequence $\left(y_{n}\right)_{n=1}^{\infty}$ with $y_{n}=-\frac{1}{n}$ converges to 0 , whereas

$$
\begin{aligned}
g\left(y_{n}\right) & =\frac{\sqrt{1-\frac{1}{n}}-1}{\frac{1}{n}}=n \sqrt{1-\frac{1}{n}}-n=\sqrt{n^{2}-n}-n \\
& =\left[\sqrt{n^{2}-n}-n\right] \frac{\sqrt{n^{2}-n}+n}{\sqrt{n^{2}-n}+n}=\frac{n^{2}-n-n^{2}}{\sqrt{n^{2}-n}+n}=-\frac{1}{\sqrt{1-\frac{1}{n}}+1} .
\end{aligned}
$$

Hence, $\lim _{n \rightarrow \infty} g\left(y_{n}\right)=-\frac{1}{2}$.
The foregoing implies that the limit $\lim _{x \rightarrow 0} g(x)$ doesn't exist.
7.18 (a) Because $\lim _{x \rightarrow-\infty} f(x)=0$, for $\varepsilon=f(0)>0$ an $H_{1} \in \mathbb{R}$ exists such that

$$
f(x)<\varepsilon=f(0)
$$

whenever $x<H_{1}$. This however means that $0>H_{1}$.
Because $\lim _{x \rightarrow \infty} f(x)=0$, an $H_{2}>H_{1} \in \mathbb{R}$ exists such that

$$
f(x)<\varepsilon=f(0)
$$

whenever $x>H_{2}$. This however means that $0<H_{2}$.
(b) The function f restricted to the compact interval $\left[H_{1}, H_{2}\right]$ is continuous. According to the Theorem of

Weierstrass, the function f has a maximum $f(d)$ on the interval $\left[H_{1}, H_{2}\right]$.
Then, however, $f(d)$ is also the maximum of the function f on \mathbb{R}. This can be seen as follows:

$$
f(d)\left\{\begin{array}{lll}
\geq f(0)>f(x) & \text { if } & x<H_{1} \\
\geq f(x) & \text { if } & x \in\left[H_{1}, H_{2}\right] \\
\geq f(0)>f(x) & \text { if } & x>H_{2}
\end{array}\right.
$$

