
6.12 Let h be the function on [0, 1] defined by

h(x) = f(x)− g(x) = x2 − g(x).

As the function g is continuous, the function h is continuous too.

Furthermore,

h(0) = 0− g(0) = −g(0) ≤ 0

h(1) = 1− g(1) ≥ 1− 1 = 0.and

If h(0) = 0 or h(1) = 0, then the equation h(x) = 0 ⇐⇒ g(x) = x2 has a solution.

If h(0) < 0 and h(1) > 0, then the Intermediate Value Theorem applied to the function h implies that

the equation h(x) = 0 ⇐⇒ g(x) = x2 has a solution.

7.2 Consider the sequence
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Hence the sequence
(
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)∞

n=1
is not bounded below. So it is definitely not convergent (as you know

each convergent sequence is bounded). According to the definition, the limit of f(x) as x → 1 doesn’t

exist.

7.3 Assume that lim
x↓c

f(x) = ℓ and lim
x↑c

f(x) = ℓ.

Let
(

xn

)∞

n=1
be a sequence converging to c such that xn 6= c for all n.

We have to prove that lim
n→∞

f(xn) = ℓ.

We will suppose that the sequence
(

xn

)∞

n=1
has an infinite number of terms larger than c and an infinite

number of terms smaller than c. (Otherwise, the proof is simple.)

Since xn → c as n → ∞, the subsequence of
(

xn

)∞

n=1
consisting of the terms larger than c converges to c

too. Because lim
x↓c

f(x) = ℓ, a number N ′ exists such that

|f(xn)− ℓ| < ε,

whenever n > N ′
and xn is larger than c.

Similarly, a number N ′′ exists such that

|f(xn)− ℓ| < ε,

whenever n > N ′
and xn is smaller than c.



By consequence, for all n > N = max{N ′, N ′′},

|f(xn)− ℓ| < ε.

In other words: lim
n→∞

f(xn) = ℓ. As the sequence
(

xn

)∞

n=1
was arbitrarily chosen, this proves that

lim
x→c

f(x) = ℓ.

7.10 Assume that the limit exists, say lim
x→∞

3 + x√
x

= ℓ, where ℓ ≥ 0.

Then corresponding to ε = 1 a number H exists such that for all x > H
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x > 1 + ℓ.

Since we have a contradiction, the limit doesn’t exist.

7.12 For every x > 0,

|z(x)− (x + 1)| = |
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Let ε > 0. Take H = ε−1. Then for x > H ,

|z(x)− (x+ 1)| < 1

x
<

1

H
= ε.

This shows that y = x+ 1 is a linear asymptote of the function z at infinity.

For every x < 0,

|z(x)− (1 − x)| = |
√

1 + x2 + 1− 1 + x| = |
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Let ε > 0. Take H = −ε−1. Then for x < H ,

|z(x)− (x+ 1)| < 1

−x
<

1

−H
= ε.

This shows that y = 1− x is a linear asymptote of the function z at minus infinity.

The graph of the function z is represented below.
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7.14 The sequence
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The sequence
(

yn
)∞

n=1
with yn = − 1

n
converges to 0, whereas

g(yn) =

√

1− 1

n
− 1

1

n

= n

√

1− 1

n
− n =

√

n2 − n− n

=
[

√

n2 − n− n
]

√
n2 − n+ n√
n2 − n+ n

=
n2 − n− n2

√
n2 − n+ n

= − 1
√

1− 1

n
+ 1

.

Hence, lim
n→∞

g(yn) = − 1

2
.

The foregoing implies that the limit lim
x→0

g(x) doesn’t exist.

7.18 (a) Because lim
x→−∞

f(x) = 0, for ε = f(0) > 0 an H1 ∈ IR exists such that

f(x) < ε = f(0),

whenever x < H1. This however means that 0 > H1.

Because lim
x→∞

f(x) = 0, an H2 > H1 ∈ IR exists such that

f(x) < ε = f(0),

whenever x > H2. This however means that 0 < H2.

(b) The function f restricted to the compact interval [H1, H2] is continuous. According to the Theorem of

Weierstrass, the function f has a maximum f(d) on the interval [H1, H2].

Then, however, f(d) is also the maximum of the function f on IR. This can be seen as follows:

f(d)











≥ f(0) > f(x) if x < H1

≥ f(x) if x ∈ [H1, H2]

≥ f(0) > f(x) if x > H2.


