6.12 Let h be the function on [0, 1] defined by

h(z) = f(2) — g(z) = 2* — g(x).

As the function g is continuous, the function A is continuous too.

Furthermore,

and h1l)=1-g(1)>1-1=0.

If h(0) = 0 or k(1) = 0, then the equation h(z) = 0 <= g(x) = 22 has a solution.
If h(0) < 0 and h(1) > 0, then the Intermediate Value Theorem applied to the function h implies that

the equation h(z) = 0 <= g(x) = 2% has a solution.
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=—(Wnvn+1l+n+1)=—-(Vn?+n+n+1)<-n.
Hence the sequence ( faa+ %))Zozl is not bounded below. So it is definitely not convergent (as you know
each convergent sequence is bounded). According to the definition, the limit of f(z) as # — 1 doesn’t

exist.

7.3 Assume that lim f(z) = £ and lim f(z) =
zlec e
Let (:vn)zozl be a sequence converging to ¢ such that x, # c for all n.
We have to prove that lim flzn) = L.
We will suppose that the sequence (xn) , has an infinite number of terms larger than ¢ and an infinite
number of terms smaller than c. (Otherw1se the proof is simple.)

Since x,, — ¢ as n — 0o, the subsequence of (wn) consisting of the terms larger than ¢ converges to ¢

=1
too. Because 11?1 f(z) = ¢, a number N’ exists such that
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|f(xn) - €| <Eg,

whenever n > N’ and z,, is larger than c.

Similarly, a number N’ exists such that
|f(zn) — 1] <e,

whenever n > N’ and z,, is smaller than c.



By consequence, for all n > N = max{N', N"},

|f(xn) - €| <e.
In other words: lim f(z,) = ¢. As the sequence (xn)oo_l was arbitrarily chosen, this proves that
n— o0 n=
lim f(z) = ¢.
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7.10 Assume that the limit exists, say lim =/, where £ > 0.
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Then corresponding to € = 1 a number H exists such that for all z > H
3 3
' +x—£’<1=>ﬁ<1+£.
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If however z > (£ + 1)2, then
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Since we have a contradiction, the limit doesn’t exist.
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7.12 For every = > 0,
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Let ¢ > 0. Take H = ¢~!. Then for x > H,
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lz(z) = (z+1)] < - < fi €

This shows that y = z 4+ 1 is a linear asymptote of the function z at infinity.

For every z < 0,

lz2(z) — (1—a)|=|V1+22+1—-1+z|=|V1+ 22+ 2| = |[V1+22+z]
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Let € > 0. Take H = —e~!. Then for z < H,
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|z(x) = (z+ 1)| < — <—p=¢

This shows that y = 1 — z is a linear asymptote of the function z at minus infinity.

The graph of the function z is represented below.
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7.14 The sequence (a:n) with x,, = — converges to 0, whereas
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Hence, nhﬁrrgo g9(xn) = 5.
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The sequence (yn)zofl with y, = —— converges to 0, whereas
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Hence, nh_)ngo 9(yn) = —3.

The foregoing implies that the limit lirr%) g(x) doesn’t exist.
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7.18 (a) Because EIEI f(x) =0, for e = f(0) > 0 an Hy € IR exists such that

whenever x < Hy. This however means that 0 > H;.

Because lim f(x) =0, an Hy > H; € IR exists such that
Tr—r 00

whenever x > Hy. This however means that 0 < Hs.
(b) The function f restricted to the compact interval [Hy, Hs] is continuous. According to the Theorem of
Weierstrass, the function f has a maximum f(d) on the interval [H;, Hs].

Then, however, f(d) is also the maximum of the function f on IR. This can be seen as follows:

> f(0)> f(z) if z< H
> f(0)> f(z) if x> H,.



