9.11 (a) The set V is not a linear subspace of \mathbb{R}^{3} because it is not closed with respect to the scalar multiplication.
For example: $\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right] \in V$, but $2\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right] \notin V$.
(b) The set W is not a linear subspace of \mathbb{R}^{3} because it is not closed with respect to the scalar multiplication.
For example: $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right] \in W$, but $2\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right] \notin W$.
9.12 (a) The set

$$
U=\left\{A \in \mathbb{M}_{2 \times 2} \mid \operatorname{det} A=0\right\}
$$

is not a linear subspace of $\mathrm{IM}_{2 \times 2}$, because the set is not closed with respect to the addition.
Consider for example the matrices $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$. Then $\operatorname{det} A=\operatorname{det} B=0$, so $A, B \in U$.
However $A+B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $\operatorname{det}(A+B)=1$. So $A+B \notin U$.
(b) The set

$$
V=\left\{x \mapsto a_{1} x+a_{2} x^{2} \mid a_{1} \text { and } a_{2} \text { whole numbers }\right\}
$$

is not a linear subspace of \mathbb{P}^{3}, because the set is not closed with respect to the scalar multiplication. Consider for example the polynomial $p: x \rightarrow x+x^{2}$. Then $p \in V$. However, since $\frac{1}{2} p(x)=\frac{1}{2} x+\frac{1}{2} x^{2}$, $\frac{1}{2} p \notin V$.
(c) The set

$$
W=\{f \in \mathbb{F} \mid f(0)=2\}
$$

is not a linear subspace of \mathbb{F}, because the set is not closed with respect to the scalar multiplication. Consider for example the function f defined by $f(x)=2$ for $x \in \mathbb{R}$. Then $f \in W$. However $\frac{1}{2} f \notin W$ because $\frac{1}{2} f(0)=1 \neq 2$.
9.13 (a) We have to check whether an $\underline{x} \in \mathbb{R}^{4}$ exists such that $T(\underline{x})=\left[\begin{array}{l}1 \\ 3 \\ 0\end{array}\right]$.

So in fact we have to check the solvability of the system $A \underline{x}=\underline{b}$, where

$$
A=\left[\begin{array}{rrrr}
4 & 1 & -2 & -3 \\
2 & 1 & 1 & -4 \\
6 & 0 & -9 & 9
\end{array}\right] \quad \text { and } \quad \underline{b}=\left[\begin{array}{l}
1 \\
3 \\
0
\end{array}\right]
$$

(Partial) reduction of the augmented coefficient matrix of the system leads to:

$$
\begin{aligned}
{\left[\begin{array}{rrrrr}
4 & 1 & -2 & -3 & 1 \\
2 & 1 & 1 & -4 & 3 \\
6 & 0 & -9 & 9 & 0
\end{array}\right] } & \rightarrow\left[\begin{array}{rrrrr}
1 & \frac{1}{2} & \frac{1}{2} & -2 & \frac{3}{2} \\
0 & -1 & -4 & 5 & -5 \\
0 & -3 & -12 & 21 & -9
\end{array}\right] \rightarrow\left[\begin{array}{rrrrr}
1 & \frac{1}{2} & \frac{1}{2} & -2 & \frac{3}{2} \\
0 & 1 & 4 & -5 & 5 \\
0 & -3 & -12 & 21 & -9
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrrr}
1 & 0 & -1 \frac{1}{2} & \frac{1}{2} & -1 \\
0 & 1 & 4 & -5 & 5 \\
0 & 0 & 0 & 6 & 6
\end{array}\right] .
\end{aligned}
$$

Hence, the system has a solution which implies that $\underline{b} \in \operatorname{Im}(T)$.
(b) We have to check whether $T\left(\underline{e}_{4}\right)=\underline{0}$. Well, $T\left(\underline{e}_{4}\right)=\left[\begin{array}{r}-3 \\ -4 \\ 9\end{array}\right]$. By consequence, $\underline{e}_{4} \notin \operatorname{Ker}(T)$.
9.15 (a) Let $p: x \rightarrow 1+x$. Then $p \in \mathbb{P}_{2}$ and $T(p)=q$, where $q(x)=x+x^{2}$. So q is the image of the polynomial p, that is: q is contained in the range of the mapping T.
(b) If $p \in \operatorname{Ker}(T)$, then $T(p)=0$, where 0 denotes the null function.

So $x p(x)=0$ for all $x \in \mathbb{R}$. This is possible only if $p(x)=0$ for all $x \in \mathbb{R} \backslash\{0\}$. Since p is a continuous function, this implies that $p(x)=0$ for all $x \in \mathbb{R}$. Hence, $\operatorname{Ker}(T)=\{0\}$.
9.17 We have to check whether the system $A \underline{x}=\underline{b}$ is solvable, where

$$
A=\left[\begin{array}{rr}
0 & 1 \\
-2 & 3 \\
2 & -1
\end{array}\right] \quad \text { and } \quad \underline{b}=\left[\begin{array}{c}
0 \\
4 \\
5
\end{array}\right]
$$

In order to do so we reduce the augmented coefficient matrix of the system:

$$
\left[\begin{array}{rrr}
0 & 1 & 0 \\
-2 & 3 & 4 \\
2 & -1 & 5
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
2 & -1 & 5 \\
-2 & 3 & 4 \\
0 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & -\frac{1}{2} & \frac{5}{2} \\
0 & 2 & 9 \\
0 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 0 & \frac{19}{4} \\
0 & 1 & \frac{9}{2} \\
0 & 0 & -\frac{9}{2}
\end{array}\right] .
$$

Since the system is not solvable, the vector \underline{b} cannot be written as a linear combination of the vectors corresponding with the columns of the matrix A.
9.18 We are looking for numbers c_{1}, c_{2} and c_{3} such that $p=c_{1} p_{1}+c_{2} p_{2}+c_{3} p_{3}$.

Then, for all $x \in \mathbb{R}$,

$$
p(x)=c_{1} p_{1}(x)+c_{2} p_{2}(x)+c_{3} p_{3}(x)
$$

or

$$
\begin{aligned}
-9-7 x-15 x^{2} & =c_{1}\left(2+x+4 x^{2}\right)+c_{2}\left(1-x+3 x^{2}\right)+c_{3}\left(3+2 x+5 x^{2}\right) \\
& =2 c_{1}+c_{2}+3 c_{3}+\left(c_{1}-c_{2}+2 c_{3}\right) x+\left(4 c_{1}+3 c_{2}+5 c_{3}\right) x^{3}
\end{aligned}
$$

This is possible only if the corresponding coefficients are equal. So we have to solve the system

$$
\left\{\begin{aligned}
2 c_{1}+c_{2}+3 c_{3} & =-9 \\
c_{1}-c_{2}+2 c_{3} & =-7 \\
4 c_{1}+3 c_{2}+5 c_{3} & =-15
\end{aligned}\right.
$$

Reduction of the augmented coefficient matrix of this system leads to

$$
\left.\begin{array}{rl}
{\left[\begin{array}{rrrr}
2 & 1 & 3 & -9 \\
1 & -1 & 2 & -7 \\
4 & 3 & 5 & -15
\end{array}\right]} & \rightarrow\left[\begin{array}{rrrr}
1 & -1 & 2 & -7 \\
2 & 1 & 3 & -9 \\
4 & 3 & 5 & -15
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & -1 & 2 & -7 \\
0 & 3 & -1 & 5 \\
0 & 7 & -3 & 13
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & -1 & 2 \\
0 & 1 & -\frac{1}{3}
\end{array} \frac{5}{3}\right. \\
0 & 7 \\
-3 & 13
\end{array}\right] .
$$

So $c_{1}=-2, c_{2}=1$ and $c_{3}=-2$, that is: $p=-2 p_{1}+p_{2}-2 p_{3}$.
9.19 We are looking for numbers c_{1}, c_{2} and c_{3} such that

$$
\left[\begin{array}{rr}
6 & -8 \\
-1 & -8
\end{array}\right]=c_{1} A+c_{2} B+c_{3} C \Longleftrightarrow\left[\begin{array}{rr}
6 & -8 \\
-1 & -8
\end{array}\right]=\left[\begin{array}{cc}
4 c_{1}+c_{2} & -c_{2}+2 c_{3} \\
-2 c_{1}+2 c_{2}+c_{3} & -2 c_{1}+3 c_{2}+4 c_{3}
\end{array}\right] .
$$

So we have to solve the system

$$
\left\{\begin{aligned}
4 c_{1}+c_{2} & =6 \\
-c_{2}+2 c_{3} & =-8 \\
-2 c_{1}+2 c_{2}+c_{3} & =-1 \\
-2 c_{1}+3 c_{2}+4 c_{3} & =-8
\end{aligned}\right.
$$

Reduction of the augmented coefficient matrix of this system leads to

$$
\left.\begin{array}{rl}
{\left[\begin{array}{rrrr}
4 & 1 & 0 & 6 \\
0 & -1 & 2 & -8 \\
-2 & 2 & 1 & -1 \\
-2 & 3 & 4 & -8
\end{array}\right]} & \rightarrow\left[\begin{array}{rrrr}
1 & \frac{1}{4} & 0 & \frac{3}{2} \\
0 & -1 & 2 & -8 \\
0 & 2 \frac{1}{2} & 1 & 2 \\
0 & 3 \frac{1}{2} & 4 & -5
\end{array}\right]
\end{array} \rightarrow\left[\begin{array}{rrrr}
1 & \frac{1}{4} & 0 & \frac{3}{2} \\
0 & 1 & -2 & 8 \\
0 & 2 \frac{1}{2} & 1 & 2 \\
0 & 3 \frac{1}{2} & 4 & -5
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 0 & \frac{1}{2} & -\frac{1}{2} \\
0 & 1 & -2 & 8 \\
0 & 0 & 6 & -18 \\
0 & 0 & 11 & -33
\end{array}\right]\right) \quad \rightarrow\left[\begin{array}{rrrrr}
1 & 0 & \frac{1}{2} & -\frac{1}{2} \\
0 & 1 & -2 & 8 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 0
\end{array}\right] . \quad .
$$

So $c_{1}=1, c_{2}=2$ and $c_{3}=-3$, that is:

$$
\left[\begin{array}{rr}
6 & -8 \\
-1 & -8
\end{array}\right]=A+2 B-3 C
$$

The zero matrix is also a linear combination of the matrices A, B and C : take all the weighs equal to 0 .
9.22 Let $\underline{v} \in S$. As \underline{v}_{i} is a linear combination of the vectors $\underline{w}_{1}, \ldots, \underline{w}_{n}, \underline{v}_{i} \in \operatorname{span}\left\{\underline{w}_{1}, \ldots, \underline{w}_{n}\right\}=T$. So \underline{v} is a linear combination of vectors in T. Then $\underline{v} \in T$. As \underline{v} was arbitrarily chosen, this implies that $S \subset T$.

In a similar way one proves that $T \subset S$.
10.1 (a) Obviously, $\underline{v}_{2}=-5 \underline{v}_{1}$. So by Theorem 1, the two vectors are linearly dependent.
(b) According to Theorem 2, three vectors in \mathbb{R}^{2} are linearly dependent.
(c) Obviously, $p_{2}=2 p_{1}$. So by Theorem 1 , the two polynomials are linearly dependent.
(d) Obviously, $B=-A$. So by Theorem 1 , the two matrices are linearly dependent.
10.2 (a) Since the one vector is not a multiple of the other one, the vectors are linearly independent.
(b) We have to investigate whether numbers c_{1}, c_{2} and c_{3} (not all of them equal to zero) exist such that $c_{1} \underline{v}_{1}+c_{2} \underline{v}_{2}+c_{3} \underline{v}_{3}=\underline{0}$.
Equivalently, we have to investigate, whether the system $A \underline{x}=\underline{0}$ has a non-trivial solution, where

$$
A=\left[\begin{array}{rrr}
-3 & 5 & 1 \\
0 & -1 & 1 \\
4 & 2 & 3
\end{array}\right]
$$

Well, since

$$
\operatorname{det} A=-3 \cdot \operatorname{det}\left[\begin{array}{rr}
-1 & 1 \\
2 & 3
\end{array}\right]+4 \cdot \operatorname{det}\left[\left.\begin{array}{rr}
5 & 1 \\
-1 & 1
\end{array} \right\rvert\,=-3 \cdot(-5)+4 \cdot 6=39 \neq 0\right.
$$

the matrix A is invertible. So, according to Theorem 7.6 , the system $A \underline{x}=\underline{0}$ only has the trivial solution.

Hence, $c_{1}=c_{2}=c_{3}=0$, which means that the vectors are linearly independent.
10.3 We have to investigate whether numbers c_{1}, c_{2} and c_{3} (not all of them equal to zero) exist such that $c_{1} p_{1}+c_{2} p_{2}+c_{3} p_{3}=0$, where 0 denotes the null function.

Now $c_{1} p_{1}+c_{2} p_{2}+c_{3} p_{3}=0$ if and only if, for all $x \in \mathbb{R}$,

$$
c_{1}\left(2-x+4 x^{2}\right)+c_{2}\left(3+6 x+2 x^{2}\right)+c_{3}\left(2+10 x-4 x^{2}\right)=0 .
$$

This means that, for all $x \in \mathbb{R}$,

$$
2 c_{1}+3 c_{2}+2 c_{3}+\left(-c_{1}+6 c_{2}+10 c_{3}\right) x+\left(4 c_{1}+2 c_{2}-4 c_{3}\right) x^{2}=0
$$

This is possible only if all coefficients are equal to zero (the number of zeros of a polynomial of degree two is at most equal to two). So the constants c_{1}, c_{2} and c_{3} satisfy

$$
\left\{\begin{aligned}
2 c_{1}+3 c_{2}+2 c_{3} & =0 \\
-c_{1}+6 c_{2}+10 c_{3} & =0 \\
4 c_{1}+2 c_{2}-4 c_{3} & =0
\end{aligned}\right.
$$

(Partial) reduction of the coefficient matrix of this system leads to

$$
\left[\begin{array}{rrr}
2 & 3 & 2 \\
-1 & 6 & 10 \\
4 & 2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & -6 & -10 \\
0 & 15 & 22 \\
0 & 26 & 36
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -6 & -10 \\
0 & 1 & \frac{22}{15} \\
0 & 0 & 36-\frac{26 \times 22}{15}
\end{array}\right]
$$

Hence, $c_{1}=c_{2}=c_{3}=0$. According to the definition, the polynomials p_{1}, p_{2} and p_{3} are linearly independent.
10.4 First we will prove that the vectors $\underline{v}_{1}, \ldots, \underline{v}_{n-1}$ are linearly independent.

Assume that $c_{1} \underline{v}_{1}+\cdots+c_{n-1} \underline{v}_{n-1}=\underline{0}$, for some numbers c_{1}, \ldots, c_{n-1}.
Then $c_{1} \underline{v}_{1}+\cdots+c_{n-1} \underline{v}_{n-1}+0 \underline{v}_{n}=\underline{0}$.
Since the vectors $\underline{v}_{1}, \ldots, \underline{v}_{n}$ are linearly independent this implies that $c_{1}=c_{2}=\ldots=c_{n-1}=0$. So the vectors $\underline{v}_{1}, \underline{v}_{2}, \ldots, \underline{v}_{n-1}$ are linearly independent

Next we will prove that the vectors $\underline{v}_{1}, \ldots, \underline{v}_{n-1}$ do not span V by showing that
$\underline{v}_{n} \notin \operatorname{span}\left\{\underline{v}_{1}, \ldots, \underline{v}_{n-1}\right\}$.
Suppose that the vector \underline{v}_{n} is in this span. Then constants c_{1}, \ldots, c_{n-1} exist such that $\underline{v}_{n}=c_{1} \underline{v}_{1}+\cdots+c_{n-1} \underline{v}_{n-1}$. Then, however, Theorem 1 implies that the vectors $\underline{v}_{1}, \ldots, \underline{v}_{n}$ are linearly dependent. This is a contradiction.

