
9.11 (a) The set V is not a linear subspace of IR3 because it is not closed with respect to the scalar multipli-

cation.

For example:







0

1

1






∈ V , but 2







0

1

1






/∈ V .

(b) The set W is not a linear subspace of IR3 because it is not closed with respect to the scalar multipli-

cation.

For example:







0

1

0






∈ W , but 2







0

1

0






/∈ W .

9.12 (a) The set

U = {A ∈ IM2×2| detA = 0}

is not a linear subspace of IM2×2, because the set is not closed with respect to the addition.

Consider for example the matrices A =

[

1 0

0 0

]

and B =

[

0 0

0 1

]

. Then detA = detB = 0, so

A,B ∈ U .

However A+B =

[

1 0

0 1

]

and det(A+B) = 1. So A+B /∈ U .

(b) The set

V = {x 7→ a1x+ a2x
2| a1 and a2 whole numbers}

is not a linear subspace of IP3, because the set is not closed with respect to the scalar multiplication.

Consider for example the polynomial p:x → x+ x2. Then p ∈ V . However, since 1

2
p(x) = 1

2
x+ 1

2
x2,

1

2
p /∈ V .

(c) The set

W = {f ∈ IF| f(0) = 2}

is not a linear subspace of IF, because the set is not closed with respect to the scalar multiplication.

Consider for example the function f defined by f(x) = 2 for x ∈ IR. Then f ∈ W . However 1

2
f /∈ W

because 1

2
f(0) = 1 6= 2.

9.13 (a) We have to check whether an x ∈ IR4 exists such that T (x) =





1
3
0



.

So in fact we have to check the solvability of the system Ax = b, where

A =







4 1 −2 −3

2 1 1 −4

6 0 −9 9






and b =







1

3

0






.

(Partial) reduction of the augmented coefficient matrix of the system leads to:






4 1 −2 −3 1

2 1 1 −4 3

6 0 −9 9 0






→







1 1

2

1

2
−2 3

2

0 −1 −4 5 −5

0 −3 −12 21 −9






→







1 1

2

1

2
−2 3

2

0 1 4 −5 5

0 −3 −12 21 −9







→







1 0 −1 1

2

1

2
−1

0 1 4 −5 5

0 0 0 6 6






.

Hence, the system has a solution which implies that b ∈ Im(T ).



(b) We have to check whether T (e
4
) = 0. Well, T (e

4
) =





−3
−4
9



. By consequence, e
4
/∈ Ker(T ).

9.15 (a) Let p:x → 1 + x. Then p ∈ IP2 and T (p) = q, where q(x) = x + x2. So q is the image of the

polynomial p, that is: q is contained in the range of the mapping T .

(b) If p ∈ Ker(T ), then T (p) = 0, where 0 denotes the null function.

So xp(x) = 0 for all x ∈ IR. This is possible only if p(x) = 0 for all x ∈ IR \ {0}. Since p is a

continuous function, this implies that p(x) = 0 for all x ∈ IR. Hence, Ker(T ) = {0}.

9.17 We have to check whether the system Ax = b is solvable, where

A =







0 1

−2 3

2 −1






and b =







0

4

5






.

In order to do so we reduce the augmented coefficient matrix of the system:







0 1 0

−2 3 4

2 −1 5






→







2 −1 5

−2 3 4

0 1 0






→







1 − 1

2

5

2

0 2 9

0 1 0






→







1 0 19

4

0 1 9

2

0 0 − 9

2






.

Since the system is not solvable, the vector b cannot be written as a linear combination of the vectors

corresponding with the columns of the matrix A.

9.18 We are looking for numbers c1, c2 and c3 such that p = c1p1 + c2p2 + c3p3.

Then, for all x ∈ IR,

p(x) = c1p1(x) + c2p2(x) + c3p3(x)

or
−9− 7x− 15x2 = c1(2 + x+ 4x2) + c2(1− x+ 3x2) + c3(3 + 2x+ 5x2)

= 2c1 + c2 + 3c3 + (c1 − c2 + 2c3)x + (4c1 + 3c2 + 5c3)x
3.

This is possible only if the corresponding coefficients are equal. So we have to solve the system











2c1 + c2 + 3c3 = −9

c1 − c2 + 2c3 = −7

4c1 + 3c2 + 5c3 = −15.

Reduction of the augmented coefficient matrix of this system leads to







2 1 3 −9

1 −1 2 −7

4 3 5 −15






→







1 −1 2 −7

2 1 3 −9

4 3 5 −15






→







1 −1 2 −7

0 3 −1 5

0 7 −3 13






→







1 −1 2 −7

0 1 − 1

3

5

3

0 7 −3 13







→







1 0 5

3
− 16

3

0 1 − 1

3

5

3

0 0 − 2

3

4

3






→







1 0 5

3
− 16

3

0 1 − 1

3

5

3

0 0 1 −2






→







1 0 0 −2

0 1 0 1

0 0 1 −2






.

So c1 = −2, c2 = 1 and c3 = −2, that is: p = −2p1 + p2 − 2p3.



9.19 We are looking for numbers c1, c2 and c3 such that

[

6 −8

−1 −8

]

= c1A+ c2B + c3C ⇐⇒

[

6 −8

−1 −8

]

=

[

4c1 + c2 −c2 + 2c3

−2c1 + 2c2 + c3 −2c1 + 3c2 + 4c3

]

.

So we have to solve the system



















4c1 + c2 = 6

−c2 + 2c3 = −8

−2c1 + 2c2 + c3 = −1

−2c1 + 3c2 + 4c3 = −8.

Reduction of the augmented coefficient matrix of this system leads to











4 1 0 6

0 −1 2 −8

−2 2 1 −1

−2 3 4 −8











→











1 1

4
0 3

2

0 −1 2 −8

0 2 1

2
1 2

0 3 1

2
4 −5











→











1 1

4
0 3

2

0 1 −2 8

0 2 1

2
1 2

0 3 1

2
4 −5











→











1 0 1

2
− 1

2

0 1 −2 8

0 0 6 −18

0 0 11 −33











→











1 0 1

2
− 1

2

0 1 −2 8

0 0 1 −3

0 0 0 0











→











1 0 0 1

0 1 0 2

0 0 1 −3

0 0 0 0











.

So c1 = 1, c2 = 2 and c3 = −3, that is:

[

6 −8

−1 −8

]

= A+ 2B − 3C.

The zero matrix is also a linear combination of the matrices A, B and C: take all the weighs equal

to 0.

9.22 Let v ∈ S. As v
i
is a linear combination of the vectors w

1
, . . . , w

n
, v

i
∈ span{w

1
, . . . , w

n
} = T . So

v is a linear combination of vectors in T . Then v ∈ T . As v was arbitrarily chosen, this implies that

S ⊂ T .

In a similar way one proves that T ⊂ S.

10.1 (a) Obviously, v
2
= −5 v

1
. So by Theorem 1, the two vectors are linearly dependent.

(b) According to Theorem 2, three vectors in IR2 are linearly dependent.

(c) Obviously, p2 = 2p1. So by Theorem 1, the two polynomials are linearly dependent.

(d) Obviously, B = −A. So by Theorem 1, the two matrices are linearly dependent.

10.2 (a) Since the one vector is not a multiple of the other one, the vectors are linearly independent.

(b) We have to investigate whether numbers c1, c2 and c3 (not all of them equal to zero) exist such that

c1 v1 + c2 v2 + c3 v3 = 0.

Equivalently, we have to investigate, whether the system Ax = 0 has a non-trivial solution, where

A =







−3 5 1

0 −1 1

4 2 3






.



Well, since

detA = −3 · det

[

−1 1

2 3

]

+ 4 · det

[

5 1

−1 1

∣

∣

∣

∣

= −3 · (−5) + 4 · 6 = 39 6= 0,

the matrix A is invertible. So, according to Theorem 7.6, the system Ax = 0 only has the trivial

solution.

Hence, c1 = c2 = c3 = 0, which means that the vectors are linearly independent.

10.3 We have to investigate whether numbers c1, c2 and c3 (not all of them equal to zero) exist such that

c1p1 + c2p2 + c3p3 = 0, where 0 denotes the null function.

Now c1p1 + c2p2 + c3p3 = 0 if and only if, for all x ∈ IR,

c1(2− x+ 4x2) + c2(3 + 6x+ 2x2) + c3(2 + 10x− 4x2) = 0.

This means that, for all x ∈ IR,

2c1 + 3c2 + 2c3 + (−c1 + 6c2 + 10c3)x+ (4c1 + 2c2 − 4c3)x
2 = 0.

This is possible only if all coefficients are equal to zero (the number of zeros of a polynomial of degree

two is at most equal to two). So the constants c1, c2 and c3 satisfy











2c1 + 3c2 + 2c3 = 0

−c1 + 6c2 + 10c3 = 0

4c1 + 2c2 − 4c3 = 0.

(Partial) reduction of the coefficient matrix of this system leads to







2 3 2

−1 6 10

4 2 −4






→







1 −6 −10

0 15 22

0 26 36






→







1 −6 −10

0 1 22

15

0 0 36− 26×22

15






.

Hence, c1 = c2 = c3 = 0. According to the definition, the polynomials p1, p2 and p3 are linearly

independent.

10.4 First we will prove that the vectors v1, . . . , vn−1 are linearly independent.

Assume that c1 v1 + · · ·+ cn−1 vn−1
= 0, for some numbers c1, . . . , cn−1.

Then c1 v1 + · · ·+ cn−1 vn−1 + 0 v
n
= 0.

Since the vectors v
1
, . . . , v

n
are linearly independent this implies that c1 = c2 = . . . = cn−1 = 0. So

the vectors v
1
, v

2
, . . . , v

n−1
are linearly independent

Next we will prove that the vectors v
1
, . . . , v

n−1
do not span V by showing that

v
n
/∈ span{v

1
, . . . , v

n−1
}.

Suppose that the vector v
n
is in this span. Then constants c1, . . . , cn−1 exist such that

v
n

= c1 v1 + · · · + cn−1 vn−1
. Then, however, Theorem 1 implies that the vectors v

1
, . . . , v

n
are

linearly dependent. This is a contradiction.


