9.11 (a) The set V is not a linear subspace of IR? because it is not closed with respect to the scalar multipli-

¢v.

(b) The set W is not a linear subspace of IR? because it is not closed with respect to the scalar multipli-

cation.
0 0
For example: | 1| € V,but 2|1
1 1
cation.
0
For example: | 1| € W, but 2 |1
0

9.12 (a) The set

0

0

¢w.

U =1{A€ May| det A =0}

is not a linear subspace of M52, because the set is not closed with respect to the addition.

1 0 0 0
Consider for example the matrices A = {0 0} and B = {0 1]. Then det A = det B = 0, so

A BeU.
1
However A+ B = [0
(b) The set

0
J and det(A+B)=1. So A+ B¢U.

V = {x + a1z + a22?| a; and ay whole numbers}

is not a linear subspace of IP3, because the set is not closed with respect to the scalar multiplication.

Consider for example the polynomial p:z — x 4+ 22. Then p € V. However, since %p(:v) = %:L’ + %:cQ,

ip¢ V.
(c) The set

W= {f € F| F0) =2}

is not a linear subspace of IF, because the set is not closed with respect to the scalar multiplication.

Consider for example the function f defined by f(z) = 2 for z € R. Then f € W. However 1f ¢ W

because $f(0) =1# 2.

1
9.13 (a) We have to check whether an x € IR* exists such that T'(z) = | 3
0
So in fact we have to check the solvability of the system Az = b, where
4 1 -2 -3 1
A=12 1 1 —4 and b= 13
6 0 -9 9 0
(Partial) reduction of the augmented coefficient matrix of the system leads to:
r 3 3
4 1 -2 -3 1 I i -2 2 I i -2 2
2 1 1 4 3|—-|0 -1 -4 5 =5|—=]0 1 4 -5 5
6 0 -9 9 0 |10 =3 —12 21 -9 0 -3 —-12 21 -9
r 1 1
10 —13 1 -
- 10 1 4 -5 5
10 0 0 6 6

Hence, the system has a solution which implies that b € Im(T).




-3
(b) We have to check whether T'(e,) = 0. Well, T'(e,) = | —4 | . By consequence, e, ¢ Ker(T).
9

9.15 (a) Let p:x — 1 +x. Then p € Py and T(p) = ¢, where ¢(z) = = + 2. So ¢ is the image of the
polynomial p, that is: ¢ is contained in the range of the mapping 7T
(b) If p € Ker(T), then T'(p) = 0, where 0 denotes the null function.

So zp(z) = 0 for all z € IR. This is possible only if p(z) = 0 for all x € IR\ {0}. Since p is a
continuous function, this implies that p(z) = 0 for all € IR. Hence, Ker(T') = {0}.

9.17 We have to check whether the system Az = b is solvable, where

0 0
A=1-2 3 and b= 14
2 -1 5

In order to do so we reduce the augmented coefficient matrix of the system:

0 1 0 2 -1 5 1 -1 3 1 0 £
-2 3 4| —=>|-2 3 4[>0 2 9|—=]0 1 %
2 -1 5 0 1 0 1 0 0o o0 -2

Since the system is not solvable, the vector b cannot be written as a linear combination of the vectors

corresponding with the columns of the matrix A.

9.18 We are looking for numbers c¢1, co and c3 such that p = c1py + cops + c3ps3.

Then, for all x € IR,

p(x) = cip1(z) + cap2 () + caps(z)

or
—9 — Tz — 1522 = ¢ (2 + = + 422) + co(1 — = + 32%) + ¢3(3 + 2 + 52?)
=2¢1 + o+ 33+ (1 — co + 2¢3)x + (4ey + e + 503)303.
This is possible only if the corresponding coefficients are equal. So we have to solve the system
2ci + ¢ + 3c3 = -9
-7
—15.

c1 — c2 + 2c3
4c1 + 3co + bes

Reduction of the augmented coefficient matrix of this system leads to

2 1 3 -9 1 -1 2 -7 1 -1 2 -7 1 -1 2 -7
1 -1 2 -7|—=1(2 1 3 -9|—=|0 3 -1 5|—=|0 1 —f 3
4 3 5 -15 4 3 5 -—15 0 7 -3 13 0o 7 -3 13
(1 0 2 -1 1 0 5 -1 {1 0 0 —2

-0 1 -2 Sl—=>10 1 -3 Sl—=10 1 0 1

0o 0o -2 % 0 1 =2 0 0 1 -2

Socy =—2,co =1 and c3 = —2, that is: p = —2p1 + p2 — 2ps3.



9.19 We are looking for numbers ¢y, c2 and c3 such that

6 —8 6 -8
[ :|201A+CQB+C3C<:>|: :|=

4deq + e —co + 2c3
1 -8 -1 -8

—2c¢1 + 2¢o +c3 —2¢1 + 3¢ + 4cs
So we have to solve the system
461 + C2 = 6
—c2 + 2c3

—2c1 + 2¢5 + c3 = -1
—2c1 4+ 3co + 4e3 = 8.

I
|
o0

Reduction of the augmented coefficient matrix of this system leads to

4 1 0 6 1 1+ o0 2 1 L+ o0 2 10 § -1
0 -1 2 -8 0 -1 2 -8 0 1 -2 8 01 -2 8
— 1 — 1 —

-2 2 1 -1 0 28 1 2 028 1 2 00 6 —18
-2 3 4 -8 [0 33 4 -5 0 33 4 -5 0 0 11 -33
(10 3 -3 1 0 0 1
0 1 -2 8 0 1 0 2

— —
0 0 1 -3 0 0 1 -3
00 0 0 00 0 0

Socy =1,c0 =2 and c3 = —3, that is:

O Bl _4iep-sc
-1 -8] '
The zero matrix is also a linear combination of the matrices A, B and C: take all the weighs equal

to 0.

9.22 Let v € S. As v, is a linear combination of the vectors wy,...,w,, v; € span{w,,...,w,} =T. So

v is a linear combination of vectors in T'. Then v € T'. As v was arbitrarily chosen, this implies that

ScT.

In a similar way one proves that T' C S.

10.1

a) Obviously, v, = —Hv;. So by Theorem 1, the two vectors are linearly dependent.

(a)

(b) According to Theorem 2, three vectors in IR? are linearly dependent.

(c) Obviously, pa = 2p1. So by Theorem 1, the two polynomials are linearly dependent.
)

(d) Obviously, B = —A. So by Theorem 1, the two matrices are linearly dependent.

10.2 (a) Since the one vector is not a multiple of the other one, the vectors are linearly independent.
(b) We have to investigate whether numbers ¢y, ¢z and ¢z (not all of them equal to zero) exist such that
€1V + Cc2Vy +c3vg = 0.
Equivalently, we have to investigate, whether the system Axz = 0 has a non-trivial solution, where
-3 5 1
A= 0O -1 1
4 2 3



10.3

10.4

Well, since

-1 1 1
detA3~det[ ) 3}+4~det{ 1}3.(5)+4~639¢0,

the matrix A is invertible. So, according to Theorem 7.6, the system Az = 0 only has the trivial
solution.

Hence, ¢y = ¢2 = ¢3 = 0, which means that the vectors are linearly independent.

We have to investigate whether numbers ¢1, c2 and ¢z (not all of them equal to zero) exist such that
c1p1 + capa + czp3 = 0, where 0 denotes the null function.

Now c1p1 + cap2 + c3ps = 0 if and only if, for all z € IR,
c1(2 — x +42%) + c2(3 + 62 + 22%) + c3(2 + 10z — 42?) = 0.
This means that, for all z € IR,
2¢1 + 3¢ + 2¢3 + (—cy + 6eg + 10c3)x + (4ey + 2¢o — 4ez)x? = 0.

This is possible only if all coefficients are equal to zero (the number of zeros of a polynomial of degree

two is at most equal to two). So the constants c1,co and c3 satisfy

2c1 + 3co + 2¢3 =0
—Cc1 + 602 + 1003 =0
4c1 + 2¢9 — 4ez = 0.

(Partial) reduction of the coefficient matrix of this system leads to

2 3 2 1 -6 —10 1 —6 -10
-1 6 10[—=|0 15 22| —=(0 1 z
4 2 -4 0 26 36 0 0 36— 28x2

Hence, ¢; = ¢2 = ¢3 = 0. According to the definition, the polynomials p1,p2 and p3 are linearly

independent.
First we will prove that the vectors v,,...,v,,_; are linearly independent.
Assume that c;v; +-- -+ cp—1 2,1 =0, for some numbers cq,...,cn—1.

Then civy + -+ +cp-12, 1 +02, =0.

Since the vectors vy, ...,v,, are linearly independent this implies that ¢; =c2 = ... =¢,—1 = 0. So
the vectors v, v,,...,2,,_; are linearly independent

Next we will prove that the vectors vy,...,v,,_; do not span V by showing that

v, ¢ span{vy,...,v, 1}

Suppose that the vector v,, is in this span. Then constants ¢y, ..., c,—1 exist such that

v, = Cc1v; + -+ cp-12,_1- Then, however, Theorem 1 implies that the vectors v,,...,v, are

linearly dependent. This is a contradiction.



