9.9 (b) We will show, by means of a counterexample, that the mapping T is not linear. Consider the polynomial p, where p(x) = 1 for all $x \in \mathbb{R}$. Then T(p) is the polynomial

$$x \mapsto 2 + x + x^2.$$

So T(2p) is the polynomial

$$x \mapsto 3 + x + x^2,$$

while 2T(p) is the polynomial

$$x \mapsto 4 + 2x + 2x^2.$$

Hence, $T(2p) \neq 2T(p)$.

9.10 As $\underline{0} \in \operatorname{Col}(A)$, $\operatorname{Col}(A)$ is nonempty.

Assume that \underline{b} and \underline{b}' are contained in $\operatorname{Col}(A)$ and that c is a real number. Then vectors \underline{s} and \underline{s}' (of proper dimension) exist such that $A\underline{s} = \underline{b}$ and $A\underline{s}' = \underline{b}'$.

Then

$$A(\underline{s} + \underline{s}') = A\underline{s} + A\underline{s}' = \underline{b} + \underline{b}'.$$

This implies that $\underline{b} + \underline{b}' \in \operatorname{Col}(A)$.

In a similar way one shows that $c \underline{b} \in Col(A)$.

9.12 (d) The set

$$Z = \{ f \in \mathbb{D} | f' + 2f = 0 \}$$

is a linear subspace of \mathbb{ID} .

First of all note that Z is a non-empty set, because Z contains the null function (which is differentiable).

In order to prove that the set Z is closed with respect to the addition, we assume that $f, g \in Z$. Then the functions f and g are differentiable and f' + 2f = 0 and g' + 2g = 0. Hence the function f + g is differentiable and for all $x \in \mathbb{R}$

$$(f+g)'(x) + 2(f+g)(x) = f'(x) + 2f(x) + g'(x) + 2g(x) = 0.$$

So (f+g)' + 2(f+g) = 0, that is: $f + g \in Z$.

In order to prove that the set Z is closed with respect to the scalar multiplication, we assume that $f \in Z$ and $c \in \mathbb{R}$.

Then the function f is differentiable and f' + 2f = 0. Hence the function cf is differentiable and for all $x \in \mathbb{R}$

$$(cf)'(x) + 2(cf)(x) = cf'(x) + 2cf(x) = 0.$$

So (cf)' + 2(cf) = 0, that is: $cf \in Z$.

9.14 Note that $\operatorname{Ker}(D) = \{p \in \mathbb{P}^3 | D(p) = 0\}$. Here 0 denotes the null function.

Because D(p) = p', D(p) = 0 if and only if p' = 0.

The only polynomials whose derivative is the null function are the constant functions. So the set of constant functions is the kernel of D.

9.16 Assume that the mapping T is one-to-one.

If $\underline{v} \in \text{Ker}(T)$, then $T(\underline{v}) = \underline{0} = T(\underline{0})$. Because the mapping is one-to-one, this implies that $\underline{v} = \underline{0}$. Hence, $\text{Ker}(T) = \{\underline{0}\}$.

Assume that $\operatorname{Ker}(T) = \{\underline{0}\}.$

Suppose that $T(\underline{v}_1) = T(\underline{v}_2)$ for two vectors $\underline{v}_1, \underline{v}_2 \in V$. Since the mapping is linear, this implies that

$$T(\underline{v}_1 - \underline{v}_2) = T(\underline{v}_1) - T(\underline{v}_2) = \underline{0}.$$

So $\underline{v}_1 - \underline{v}_2 \in \text{Ker}(T)$. Hence, $\underline{v}_1 - \underline{v}_2 = \underline{0}$, or $\underline{v}_1 = \underline{v}_2$. This means that the mapping T is one-to-one.

9.20 Each element in the set W can be written as

$\begin{bmatrix} a - 3b \end{bmatrix}$		[1]		[-3]	
b-a	=a	-1	+b	1	
a		1		0	
b		0		1	

By consequence

$$W = \left\{ a \begin{bmatrix} 1\\-1\\1\\0 \end{bmatrix} + b \begin{bmatrix} -3\\1\\0\\1 \end{bmatrix} \in \mathbb{R}^4 | a, b \in \mathbb{R} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 1\\-1\\1\\0 \end{bmatrix}, \begin{bmatrix} -3\\1\\0\\1 \end{bmatrix} \right\}.$$

Hence, according to Theorem 5, W is a linear subspace.

9.23 Assume that $\underline{v}_n = c_1 \underline{v}_1 + \dots + c_{n-1} \underline{v}_{n-1}$ for some numbers c_1, \dots, c_{n-1} . We will show that $V = \operatorname{span}\{\underline{v}_1, \dots, \underline{v}_{n-1}\}$.

First we will prove the inclusion \subset .

Let $\underline{v} \in V$. Then, for some numbers d_1, \ldots, d_n ,

$$\underline{v} = d_1 \underline{v}_1 + \dots + d_n \underline{v}_n = d_1 \underline{v}_1 + \dots + d_{n-1} \underline{v}_{n-1} + d_n [c_1 \underline{v}_1 + \dots + c_{n-1} \underline{v}_{n-1}]$$

= $d_1 \underline{v}_1 + \dots + d_{n-1} \underline{v}_{n-1} + d_n c_1 \underline{v}_1 + \dots + d_n c_{n-1} \underline{v}_{n-1}$
= $(d_1 + d_n c_1) \underline{v}_1 + \dots + (d_{n-1} + d_n c_{n-1}) \underline{v}_{n-1}.$

Hence, $\underline{v} \in \operatorname{span}\{\underline{v}_1, \dots, \underline{v}_{n-1}\}$. By consequence, $V \subset \operatorname{span}\{\underline{v}_1, \dots, \underline{v}_{n-1}\}$. Finally we will prove the inclusion \supset .

Since V is a vector space and $\underline{v}_1, \ldots, \underline{v}_{n-1} \in V$, also $\operatorname{span}\{\underline{v}_1, \ldots, \underline{v}_{n-1}\} \subset V$.

9.24 Obviously, $T(\underline{v}_1), \ldots, T(\underline{v}_n) \in W$. Because W is a vector space, $\operatorname{span}\{T(\underline{v}_1), \ldots, T(\underline{v}_n)\} \subset W$. So it is sufficient to show that $W \subset \operatorname{span}\{T(\underline{v}_1), \ldots, T(\underline{v}_n)\}$.

Let $\underline{w} \in W$. Because the mapping T is surjective, there exists a vector $\underline{v} \in V$ with $T(\underline{v}) = \underline{w}$. Because the vectors $\underline{v}_1, \underline{v}_2, \ldots, \underline{v}_n$ span the space V, there exist numbers c_1, c_2, \ldots, c_n such that

$$\underline{v} = c_1 \, \underline{v}_1 + \dots + c_n \, \underline{v}_n.$$

The fact that the mapping T is linear implies that

$$\underline{w} = T(\underline{v}) = T(c_1 \, \underline{v}_1 + \dots + c_n \, \underline{v}_n) = c_1 T(\underline{v}_1) + \dots + c_n T(\underline{v}_n).$$

Hence, $\underline{w} \in \operatorname{span}\{T(\underline{v}_1), \ldots, T(\underline{v}_n)\}.$

Since the vector \underline{w} was arbitrarily chosen, we may conclude that $W \subset \text{span}\{T(\underline{v}_1), \ldots, T(\underline{v}_n)\}$.

10.5 Since the vectors $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_n$ are linearly dependent, according to Theorem 1, at least one of these vectors is a linear combination of the other ones. Say \underline{v}_n is a linear combination of the other vectors:

$$\underline{v}_n = c_1 \, \underline{v}_1 + \dots + c_{n-1} \, \underline{v}_{n-1},$$

for certain numbers c_1, \ldots, c_{n-1} . Then

$$\underline{v}_n = c_1 \underline{v}_1 + \dots + c_{n-1} \underline{v}_{n-1} + 0 \underline{v},$$

which means that \underline{v}_n is a linear combination of the vectors $\underline{v}_1, \ldots, \underline{v}_{n-1}, \underline{v}$. By Theorem 1, the vectors $\underline{v}, \underline{v}_1, \ldots, \underline{v}_n$ are linearly dependent.

10.6 Suppose that $c_1 \underline{u} + c_2 \underline{v} + c_3 \underline{w} = \underline{0}$ for some numbers c_1, c_2 en c_3 . This is possible only if $c_3 = 0$. For suppose that $c_3 \neq 0$. Then

$$\underline{w} = -\frac{c_1}{c_3}\underline{u} - \frac{c_2}{c_3}\underline{v}.$$

This however means that
$$\underline{w} \in \text{span}\{\underline{u}, \underline{v}\}$$
 which is in contradiction with the data of the exercise.
Now the fact that $c_3 = 0$ implies that

$$c_1 \,\underline{u} + c_2 \,\underline{v} = \underline{0}.$$

Because the vectors \underline{u} en \underline{v} are linearly independent this implies that $c_1 = c_2 = 0$. As a result $c_1 = c_2 = c_3 = 0$, which proves that the vectors $\underline{u}, \underline{v}$ and \underline{w} are linearly independent.