
9.9 (b) We will show, by means of a counterexample, that the mapping T is not linear.

Consider the polynomial p, where p(x) = 1 for all x ∈ IR.

Then T (p) is the polynomial

x 7→ 2 + x+ x2.

So T (2p) is the polynomial

x 7→ 3 + x+ x2,

while 2T (p) is the polynomial

x 7→ 4 + 2x+ 2x2.

Hence, T (2p) 6= 2T (p).

9.10 As 0 ∈ Col(A), Col(A) is nonempty.

Assume that b and b′ are contained in Col(A) and that c is a real number. Then vectors s and s′ (of

proper dimension) exist such that As = b and As′ = b′.

Then

A(s+ s′) = As+As′ = b+ b′.

This implies that b+ b′ ∈ Col(A).

In a similar way one shows that c b ∈ Col(A).

9.12 (d) The set

Z = {f ∈ ID| f ′ + 2f = 0}

is a linear subspace of ID.

First of all note that Z is a non-empty set, because Z contains the null function (which is differen-

tiable).

In order to prove that the set Z is closed with respect to the addition, we assume that f, g ∈ Z.

Then the functions f and g are differentiable and f ′ + 2f = 0 and g′ + 2g = 0. Hence the function

f + g is differentiable and for all x ∈ IR

(f + g)′(x) + 2(f + g)(x) = f ′(x) + 2f(x) + g′(x) + 2g(x) = 0.

So (f + g)′ + 2(f + g) = 0, that is: f + g ∈ Z.

In order to prove that the set Z is closed with respect to the scalar multiplication, we assume that

f ∈ Z and c ∈ IR.

Then the function f is differentiable and f ′ + 2f = 0. Hence the function cf is differentiable and for

all x ∈ IR

(cf)′(x) + 2(cf)(x) = cf ′(x) + 2cf(x) = 0.

So (cf)′ + 2(cf) = 0, that is: cf ∈ Z.



9.14 Note that Ker(D) = {p ∈ IP3| D(p) = 0}. Here 0 denotes the null function.

Because D(p) = p′, D(p) = 0 if and only if p′ = 0.

The only polynomials whose derivative is the null function are the constant functions.

So the set of constant functions is the kernel of D.

9.16 Assume that the mapping T is one-to-one.

If v ∈ Ker(T ), then T (v) = 0 = T (0). Because the mapping is one-to-one, this implies that v = 0.

Hence, Ker(T ) = {0}.

Assume that Ker(T ) = {0}.

Suppose that T (v1) = T (v2) for two vectors v1, v2 ∈ V . Since the mapping is linear, this implies that

T (v1 − v2) = T (v1)− T (v2) = 0.

So v
1
− v

2
∈ Ker(T ). Hence, v

1
− v

2
= 0, or v

1
= v

2
. This means that the mapping T is one-to-one.

9.20 Each element in the set W can be written as
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Hence, according to Theorem 5, W is a linear subspace.

9.23 Assume that v
n
= c1 v1 + · · ·+ cn−1 vn−1

for some numbers c1, . . . , cn−1.

We will show that V = span{v
1
, . . . , v

n−1
}.

First we will prove the inclusion ⊂.

Let v ∈ V . Then, for some numbers d1, . . . , dn,

v = d1 v1 + · · ·+ dn vn = d1 v1 + · · ·+ dn−1 vn−1
+ dn[c1 v1 + · · ·+ cn−1 vn−1

]

= d1 v1 + · · ·+ dn−1 vn−1
+ dnc1 v1 + · · ·+ dncn−1 vn−1

= (d1 + dnc1) v1 + · · ·+ (dn−1 + dncn−1) vn−1
.

Hence, v ∈ span{v1, . . . , vn−1}. By consequence, V ⊂ span{v1, . . . , vn−1}.

Finally we will prove the inclusion ⊃.

Since V is a vector space and v
1
, . . . , v

n−1
∈ V , also span{v

1
, . . . , v

n−1
} ⊂ V .



9.24 Obviously, T (v
1
), . . . , T (v

n
) ∈ W . Because W is a vector space, span{T (v

1
), . . . , T (v

n
)} ⊂ W . So it

is sufficient to show that W ⊂ span{T (v
1
), . . . , T (v

n
)}.

Let w ∈ W . Because the mapping T is surjective, there exists a vector v ∈ V with T (v) = w.

Because the vectors v
1
, v

2
, . . . , v

n
span the space V , there exist numbers c1, c2, . . . , cn such that

v = c1 v1 + · · ·+ cn vn.

The fact that the mapping T is linear implies that

w = T (v) = T (c1 v1 + · · ·+ cn vn) = c1T (v1) + · · ·+ cnT (vn).

Hence, w ∈ span{T (v1), . . . , T (vn)}.

Since the vector w was arbitrarily chosen, we may conclude that W ⊂ span{T (v
1
), . . . , T (v

n
)}.

10.5 Since the vectors v1, v2, . . . , vn are linearly dependent, according to Theorem 1, at least one of these

vectors is a linear combination of the other ones. Say v
n
is a linear combination of the other vectors:

v
n
= c1 v1 + · · ·+ cn−1 vn−1

,

for certain numbers c1, . . . , cn−1. Then

v
n
= c1 v1 + · · ·+ cn−1 vn−1

+ 0 v,

which means that v
n
is a linear combination of the vectors v

1
, . . . , v

n−1
, v. By Theorem 1, the vectors

v, v1, . . . , vn are linearly dependent.

10.6 Suppose that c1 u+ c2 v + c3 w = 0 for some numbers c1, c2 en c3.

This is possible only if c3 = 0. For suppose that c3 6= 0. Then

w = −
c1

c3
u−

c2

c3
v.

This however means that w ∈ span{u, v} which is in contradiction with the data of the exercise.

Now the fact that c3 = 0 implies that

c1 u+ c2 v = 0.

Because the vectors u en v are linearly independent this implies that c1 = c2 = 0.

As a result c1 = c2 = c3 = 0, which proves that the vectors u, v and w are linearly independent.


