9.9 (b) We will show, by means of a counterexample, that the mapping T is not linear.
Consider the polynomial p, where p(z) = 1 for all z € IR.
Then T'(p) is the polynomial

=24+ 22

So T'(2p) is the polynomial

T 34z + 2%

while 2T'(p) is the polynomial
T 44 22 + 222

Hence, T'(2p) # 2T (p).

9.10 As 0 € Col(A), Col(A) is nonempty.
Assume that b and b" are contained in Col(A) and that c is a real number. Then vectors s and s’ (of
proper dimension) exist such that As = b and As’ =b'.
Then
Als+s)=As+ As' =b+V.

This implies that b+ b € Col(4).

In a similar way one shows that cb € Col(A).

9.12 (d) The set
Z={feD| f +2f=0}

is a linear subspace of ID.

First of all note that Z is a non-empty set, because Z contains the null function (which is differen-
tiable).

In order to prove that the set Z is closed with respect to the addition, we assume that f, g € Z.
Then the functions f and g are differentiable and f’ 4+ 2f = 0 and ¢’ + 2g = 0. Hence the function
f + g is differentiable and for all x € R

(f +9) (@) +2(f + 9)(x) = f'(2) + 2f(2) + ¢'(z) + 29(x) = 0.

So (f+g9)+2(f+g)=0,thatis: f+g€ Z.
In order to prove that the set Z is closed with respect to the scalar multiplication, we assume that
fe€ZandceRR.
Then the function f is differentiable and f’ +2f = 0. Hence the function cf is differentiable and for
all z € R

(cf) (@) +2(cf)(x) = cf'(x) + 2¢f(x) = 0.

So (ef) +2(ef) =0, that is: ¢f € Z.



9.14

9.16

9.20

9.23

Note that Ker(D) = {p € P3| D(p) = 0}. Here 0 denotes the null function.
Because D(p) = p/, D(p) = 0 if and only if p’ = 0.
The only polynomials whose derivative is the null function are the constant functions.

So the set of constant functions is the kernel of D.

Assume that the mapping 7' is one-to-one.

If v € Ker(T'), then T'(v) = 0 = T(0). Because the mapping is one-to-one, this implies that v = 0.
Hence, Ker(T') = {0}.

Assume that Ker(T) = {0}.

Suppose that T'(v,) = T'(vy) for two vectors v;,v, € V. Since the mapping is linear, this implies that
T(v; —wg) =T(vy) —T(vg) =0
So v; — v, € Ker(T'). Hence, v; —u, =0, or v; = v,. This means that the mapping T is one-to-one.

Each element in the set W can be written as

a—3b 1 -3
b—a . -1 b 1
1 0
b 0 1
By consequence
1 -3 1 -3
-1 1 4 -1 1
W=<a +b € R*| a,b€e R ) =span ,
1 0 1 0
0 0 1

Hence, according to Theorem 5, W is a linear subspace.

Assume that v, =c1v; +--- 4+ ¢cp—1v,_; for some numbers cy,...,cn—1.
We will show that V' = span{v,,...,v,,_}
First we will prove the inclusion C.

Let v € V. Then, for some numbers dy,...,d,,
v=div, 4+ Fdyv, =div; +-+dp1v, | +Hdp[arv, + o1, ]
=divy+-Fdp1v, 1 +dpcivg + -+ duCro1v,
= (di +dpci)vy+ -+ (dn—1 + dncn_1) v, 1.

Hence, v € span{vy,...,v,_1}. By consequence, V' C span{v,,...,v,_1}.
Finally we will prove the inclusion D.

Since V is a vector space and v, ...,v,_; € V, also span{v,,...,v, 1} C V.



9.24

10.5

10.6

Obviously, T'(v;),...,T(v,) € W. Because W is a vector space, span{T(v;),...,T(v,)} C W. So it

is sufficient to show that W C span{T'(v;),...,T(v,)}
Let w € W. Because the mapping T is surjective, there exists a vector v € V' with T'(v) = w.

Because the vectors v;,v,, ..., v, span the space V, there exist numbers c;, ca, ..., ¢, such that
V=C1U; o+ eny,.
The fact that the mapping T is linear implies that

w=T(@) =T(crv + - +cnv,) =aT(y)+ - +cnT(v,)

Hence, w € span{T'(v,),...,T(v,)}-

Since the vector w was arbitrarily chosen, we may conclude that W C span{T'(v;),...,T(v,)}-

Since the vectors vy, v,,...,,, are linearly dependent, according to Theorem 1, at least one of these

vectors is a linear combination of the other ones. Say v,, is a linear combination of the other vectors:
Up =C1LU; + -+ Cn1 Uy,
for certain numbers c1,...,c,_1. Then
Uy =C1U + o+ 18y + 00,

which means that v, is a linear combination of the vectors v, ..., v v. By Theorem 1, the vectors

n—1

|

,U1,...,0, are linearly dependent.

Suppose that ¢; u + co v + ¢z w = 0 for some numbers ¢, co en c3.

This is possible only if c3 = 0. For suppose that ¢z # 0. Then

C1 C2
W=——u— —u.
C3 C3

This however means that w € span{u,v} which is in contradiction with the data of the exercise.
Now the fact that c3 = 0 implies that

cru+cev=0.

Because the vectors u en v are linearly independent this implies that ¢; = co = 0.

As a result ¢; = ¢co = ¢3 = 0, which proves that the vectors u,v and w are linearly independent.



