
10.7 The matrices D1 =







1 0 0

0 0 0

0 0 0






, D2 =







0 0 0

0 1 0

0 0 0






and D3 =







0 0 0

0 0 0

0 0 1






in ID3×3 form a basis

of ID3×3.

In order to prove that these matrices are linearly independent, assume that, for some numbers c1, c2

and c3, c1D1 + c2D2 + c3D3 = O. Then







c1 0 0

0 c2 0

0 0 c3






=







0 0 0

0 0 0

0 0 0






⇐⇒ c1 = c2 = c3 = 0.

So the matrices D1, D2 and D3 are linearly independent.

Finally, we prove that ID3×3 = span{D1, D2, D3}.

Let D ∈ ID3×3, so

D =







d1 0 0

0 d2 0

0 0 d3






,

for some numbers d1, d2 and d3. Then D = d1D1+ d2D2+ d3D3, that is: ID3×3 ⊂ span{D1, D2, D3}.

Since the matrices D1, D2 and D3 are diagonal matrices and ID3×3 is a vector space, also

span{D1, D2, D3} ⊂ ID3×3.

10.8 (a) According to Theorem 2, three vectors in the space IR2 are linearly dependent.

(b) The two vectors do not span the space IR3: the vector e
3
∈ IR3 is not contained in span{v

1
, v

2
}. This

can be seen as follows. In order to find numbers c1 and c2 satisfying e3 = c1 v1 + c2 v2 we reduce the

following augmented coefficient matrix







−1 6 0

3 1 0

2 1 1






→







1 −6 0

0 19 0

0 13 1






→







1 0 0

0 1 0

0 0 1






.

So such numbers c1 and c2 do not exist.

(c) Lets denote the two polynomials by p1 and p2, respectively. These polynomials do not span the space

IP2, because the polynomial p3:x → 1 is not contained in span{p1, p2}.

If p3 = c1p1 + c2p2, for some numbers c1 and c2, then these numbers should satisfy











c1 − c2 = 1

c1 + c2 = 0

c1 = 0.

Obviously, this system is inconsistent.

(d) The five matrices are linearly dependent.

Suppose that
∑5

i=1
ciMi = 0, for some numbers c1, . . . , c5. Then these numbers are a solution of a

homogeneous system of linear equations with five variables and four equations. Obviously, at least

one of these variables is a free variable. So the system has an infinite number of solutions. Hence,

the system has a non-trivial solution, which means that the matrices are linearly dependent.



10.9 (a) Let

A =

[

2 3

1 0

]

.

Since detA = −3 6= 0, the matrix A is invertible. Hence, the system Ax = 0 has only the trivial

solution. This implies that the two vectors (corresponding to the columns of the matrix A) are

linearly independent.

Furthermore, the system Ax = b is solvable for any b ∈ IR2. Hence, the two vectors span the space

IR2.

(b) This can be solved as in part (a). In this case detA = −32 + 7 = −25 6= 0.

(c) The two vectors are not linearly independent:

5 ·

[

0

0

]

+ 0 ·

[

1

3

]

=

[

0

0

]

.

(d) The two vectors are not linearly independent:
[

−4

−12

]

= − 4

3

[

3

9

]

.

10.10 Let’s denote the polynomials by p1, p2 and p3, respectively. In order to show that the polynomials

form a basis of the space IP2, we will show that they are linearly independent and that they span the

space IP2.

In order to show that the polynomials p1, p2 en p3 are independent, we suppose that c1p1+c2p2+c3p3 =

0, for some numbers c1, c2 en c3. Then, for all x ∈ IR,

c1p1(x) + c2p2(x) + c3p3(x) = 0 =⇒ c1(1 + x+ x2) + c2(x + x2) + c3x
2 = 0

=⇒ c1 + (c1 + c2)x+ (c1 + c2 + c3)x
2 = 0.

Because a polynomial is the the zero polynomial only if all coefficients are equal to zero, the numbers

c1, c2 and c3 satisfy










c1 = 0

c1 + c2 = 0

c1 + c2 + c3 = 0.

By consequence, c1 = c2 = c3 = 0, which implies that the polynomials p1, p2 and p3 are linearly

independent.

We will show that the polynomials p1, p2 and p3 span the space IP2.

Obviously, p1, p2, p3 ∈ IP2. Let p ∈ IP2, say

p(x) = a+ bx+ cx2, (x ∈ IR)

for some numbers a, b and c.

In order to check whether there exist numbers c1, c2 and c3 such that p = c1p1 + c2p2+ c3p3, we have

to investigate the solvability of the system










c1 = a

c1 + c2 = b

c1 + c2 + c3 = c.



Well, because the coefficient matrix of this system is invertible, the system is solvable for all a, b, c ∈ IR.

Hence, IP2 = span{p1, p2, p3}.

10.12 (a) Reduction of the coefficient matrix of the system leads to






1 1 −1

−2 −1 2

−1 0 1






→







1 1 −1

0 1 0

0 1 0






→







1 0 −1

0 1 0

0 0 0






.

So x3 is a free variable and each solution of the system is of the form






x3

0

x3






= x3







1

0

1






,

where x3 ∈ IR. So the solution set is span

















1

0

1

















. Hence, the vector







1

0

1






forms a basis of the

solution set.

(b) Reduction of the coefficient matrix of the system leads to






1 −3 1

2 −6 2

3 −9 3






→







1 −3 1

0 0 0

0 0 0






.

So x2 and x3 are free variables and each solution of the system is of the form






3x2 − x3

x2

x3






= x2







3

1

0






+ x3







−1

0

1






,

where x2, x3 ∈ IR. So the solution set is span

















3

1

0






,







−1

0

1

















. Hence, the vectors







3

1

0






and







−1

0

1







form a basis of the solution set (they are clearly independent).

10.14 (a) Reduction of the matrix leads to the matrix






1 0 0

0 0 1

0 0 0






.

Since the columns 1 and 3 of this reduced matrix contain the leading ones, the vectors






1

0

0






and







2

1

0







that correspond to the columns 1 and 3 of the matrix A form a basis of Col(A).

(b) Reduction of the matrix leads to the matrix










1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0











.



Since the columns 1 and 2 of this reduced matrix contain the leading ones, the vectors










1

0

0

0











and











−3

1

0

0











that correspond to the columns 1 and 2 of the matrix A form a basis of Col(A).

(c) Obviously, reduction of the matrix leads to a matrix where each column contains a leading one.

Hence, all the columns of the matrix A form a basis of Col(A).

10.15 (a) Reduction of the matrix leads to






1 −1 3

5 −4 −4

7 −6 2






→







1 −1 3

0 1 −19

0 1 −19






→







1 −1 3

0 1 −19

0 0 0






.

Since the columns 1 and 2 of this matrix contain the leading ones, the vectors






1

5

7






and







−1

−4

−6






,

that correspond to the columns 1 and 2 of the matrix A, form a basis of Col(A).

(b) Reduction of the matrix leads to






1 4 5 2

2 1 3 0

−1 3 2 2






→







1 4 5 2

0 −7 −7 −4

0 7 7 4






→







1 4 5 2

0 1 1 4

7

0 0 0 0






.

Since the columns 1 and 2 of this matrix contain the leading ones, the vectors






1

2

−1






and







4

1

3






,

that correspond to the columns 1 and 2 of the matrix A, form a basis of Col(A).

10.17 (a) Obviously, the mapping T is the left-multiplication by the (standard) matrix

A =







4 1 −2 −3

2 1 1 −4

6 0 −9 9






.

Since Ker(T ) = Null(A), we reduce the matrix A






4 1 −2 −3

2 1 1 −4

6 0 −9 9






→







6 0 −9 9

2 1 1 −4

4 1 −2 −3






→







1 0 − 3

2

3

2

0 1 4 −7

0 1 4 −9






→







1 0 − 3

2
0

0 1 4 0

0 0 0 1






.

So x3 is a free variable and each vector in Null(A) has the form

x3











3

2

−4

1

0











,



where x3 ∈ IR. So the vector










3

2

−4

1

0











forms a basis of the kernel of T .

(b) Note that Im(T ) = Col(A). Since the columns 1, 2 and 4 contain the leading ones in the reduced

matrix of A, the vectors






4

2

6






,







1

1

0






and







−3

−4

9






,

which correspond to the columns 1, 2 and 3 of the matrix A, form a basis of Im(T ).


