10.7 The matrices $D_{1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], D_{2}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ and $D_{3}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$ in $\mathbb{D}_{3 \times 3}$ form a basis of $\mathbb{D}_{3 \times 3}$.

In order to prove that these matrices are linearly independent, assume that, for some numbers c_{1}, c_{2} and $c_{3}, c_{1} D_{1}+c_{2} D_{2}+c_{3} D_{3}=O$. Then

$$
\left[\begin{array}{ccc}
c_{1} & 0 & 0 \\
0 & c_{2} & 0 \\
0 & 0 & c_{3}
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \Longleftrightarrow c_{1}=c_{2}=c_{3}=0
$$

So the matrices D_{1}, D_{2} and D_{3} are linearly independent.
Finally, we prove that $\mathbb{D}_{3 \times 3}=\operatorname{span}\left\{D_{1}, D_{2}, D_{3}\right\}$.
Let $D \in \mathbb{D}_{3 \times 3}$, so

$$
D=\left[\begin{array}{ccc}
d_{1} & 0 & 0 \\
0 & d_{2} & 0 \\
0 & 0 & d_{3}
\end{array}\right]
$$

for some numbers d_{1}, d_{2} and d_{3}. Then $D=d_{1} D_{1}+d_{2} D_{2}+d_{3} D_{3}$, that is: $\mathbb{D}_{3 \times 3} \subset \operatorname{span}\left\{D_{1}, D_{2}, D_{3}\right\}$. Since the matrices D_{1}, D_{2} and D_{3} are diagonal matrices and $\mathbb{D}_{3 \times 3}$ is a vector space, also $\operatorname{span}\left\{D_{1}, D_{2}, D_{3}\right\} \subset \mathbb{D}_{3 \times 3}$.
10.8 (a) According to Theorem 2, three vectors in the space \mathbb{R}^{2} are linearly dependent.
(b) The two vectors do not span the space \mathbb{R}^{3} : the vector $\underline{e}_{3} \in \mathbb{R}^{3}$ is not contained in $\operatorname{span}\left\{\underline{v}_{1}, \underline{v}_{2}\right\}$. This can be seen as follows. In order to find numbers c_{1} and c_{2} satisfying $\underline{e}_{3}=c_{1} \underline{v}_{1}+c_{2} \underline{v}_{2}$ we reduce the following augmented coefficient matrix

$$
\left[\begin{array}{rrr}
-1 & 6 & 0 \\
3 & 1 & 0 \\
2 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & -6 & 0 \\
0 & 19 & 0 \\
0 & 13 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

So such numbers c_{1} and c_{2} do not exist.
(c) Lets denote the two polynomials by p_{1} and p_{2}, respectively. These polynomials do not span the space \mathbb{P}_{2}, because the polynomial $p_{3}: x \rightarrow 1$ is not contained in $\operatorname{span}\left\{p_{1}, p_{2}\right\}$.
If $p_{3}=c_{1} p_{1}+c_{2} p_{2}$, for some numbers c_{1} and c_{2}, then these numbers should satisfy

$$
\left\{\begin{aligned}
c_{1}-c_{2} & =1 \\
c_{1}+c_{2} & =0 \\
c_{1} & =0
\end{aligned}\right.
$$

Obviously, this system is inconsistent.
(d) The five matrices are linearly dependent.

Suppose that $\sum_{i=1}^{5} c_{i} M_{i}=0$, for some numbers c_{1}, \ldots, c_{5}. Then these numbers are a solution of a homogeneous system of linear equations with five variables and four equations. Obviously, at least one of these variables is a free variable. So the system has an infinite number of solutions. Hence, the system has a non-trivial solution, which means that the matrices are linearly dependent.
10.9 (a) Let

$$
A=\left[\begin{array}{ll}
2 & 3 \\
1 & 0
\end{array}\right]
$$

Since $\operatorname{det} A=-3 \neq 0$, the matrix A is invertible. Hence, the system $A \underline{x}=\underline{0}$ has only the trivial solution. This implies that the two vectors (corresponding to the columns of the matrix A) are linearly independent.
Furthermore, the system $A \underline{x}=\underline{b}$ is solvable for any $\underline{b} \in \mathbb{R}^{2}$. Hence, the two vectors span the space \mathbb{R}^{2}.
(b) This can be solved as in part (a). In this case $\operatorname{det} A=-32+7=-25 \neq 0$.
(c) The two vectors are not linearly independent:

$$
5 \cdot\left[\begin{array}{l}
0 \\
0
\end{array}\right]+0 \cdot\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

(d) The two vectors are not linearly independent:

$$
\left[\begin{array}{r}
-4 \\
-12
\end{array}\right]=-\frac{4}{3}\left[\begin{array}{l}
3 \\
9
\end{array}\right]
$$

10.10 Let's denote the polynomials by p_{1}, p_{2} and p_{3}, respectively. In order to show that the polynomials form a basis of the space \mathbb{P}_{2}, we will show that they are linearly independent and that they span the space \mathbb{P}_{2}.

In order to show that the polynomials p_{1}, p_{2} en p_{3} are independent, we suppose that $c_{1} p_{1}+c_{2} p_{2}+c_{3} p_{3}=$ 0 , for some numbers c_{1}, c_{2} en c_{3}. Then, for all $x \in \mathbb{R}$,

$$
\begin{aligned}
c_{1} p_{1}(x)+c_{2} p_{2}(x)+c_{3} p_{3}(x)=0 & \Longrightarrow c_{1}\left(1+x+x^{2}\right)+c_{2}\left(x+x^{2}\right)+c_{3} x^{2}=0 \\
& \Longrightarrow c_{1}+\left(c_{1}+c_{2}\right) x+\left(c_{1}+c_{2}+c_{3}\right) x^{2}=0
\end{aligned}
$$

Because a polynomial is the the zero polynomial only if all coefficients are equal to zero, the numbers c_{1}, c_{2} and c_{3} satisfy

$$
\left\{\begin{aligned}
c_{1} & =0 \\
c_{1}+c_{2} & =0 \\
c_{1}+c_{2}+c_{3} & =0
\end{aligned}\right.
$$

By consequence, $c_{1}=c_{2}=c_{3}=0$, which implies that the polynomials p_{1}, p_{2} and p_{3} are linearly independent.

We will show that the polynomials p_{1}, p_{2} and p_{3} span the space \mathbb{P}_{2}.
Obviously, $p_{1}, p_{2}, p_{3} \in \mathbb{P}_{2}$. Let $p \in \mathbb{P}_{2}$, say

$$
p(x)=a+b x+c x^{2}, \quad(x \in \mathbb{R})
$$

for some numbers a, b and c.
In order to check whether there exist numbers c_{1}, c_{2} and c_{3} such that $p=c_{1} p_{1}+c_{2} p_{2}+c_{3} p_{3}$, we have to investigate the solvability of the system

$$
\left\{\begin{aligned}
c_{1} & =a \\
c_{1}+c_{2} & =b \\
c_{1}+c_{2}+c_{3} & =c
\end{aligned}\right.
$$

Well, because the coefficient matrix of this system is invertible, the system is solvable for all $a, b, c \in \mathbb{R}$.
Hence, $\mathbb{P}_{2}=\operatorname{span}\left\{p_{1}, p_{2}, p_{3}\right\}$.
10.12 (a) Reduction of the coefficient matrix of the system leads to

$$
\left[\begin{array}{rrr}
1 & 1 & -1 \\
-2 & -1 & 2 \\
-1 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 1 & -1 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

So x_{3} is a free variable and each solution of the system is of the form

$$
\left[\begin{array}{c}
x_{3} \\
0 \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

where $x_{3} \in \mathbb{R}$. So the solution set is $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$. Hence, the vector $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ forms a basis of the solution set.
(b) Reduction of the coefficient matrix of the system leads to

$$
\left[\begin{array}{lll}
1 & -3 & 1 \\
2 & -6 & 2 \\
3 & -9 & 3
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & -3 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

So x_{2} and x_{3} are free variables and each solution of the system is of the form

$$
\left[\begin{array}{c}
3 x_{2}-x_{3} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{2}\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]
$$

where $x_{2}, x_{3} \in \mathbb{R}$. So the solution set is span $\left\{\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]\right\}$. Hence, the vectors $\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]$ form a basis of the solution set (they are clearly independent).
10.14 (a) Reduction of the matrix leads to the matrix

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] .
$$

Since the columns 1 and 3 of this reduced matrix contain the leading ones, the vectors

$$
\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \text { and }\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
$$

that correspond to the columns 1 and 3 of the matrix A form a basis of $\operatorname{Col}(A)$.
(b) Reduction of the matrix leads to the matrix

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Since the columns 1 and 2 of this reduced matrix contain the leading ones, the vectors

$$
\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \text { and }\left[\begin{array}{r}
-3 \\
1 \\
0 \\
0
\end{array}\right]
$$

that correspond to the columns 1 and 2 of the matrix A form a basis of $\operatorname{Col}(A)$.
(c) Obviously, reduction of the matrix leads to a matrix where each column contains a leading one. Hence, all the columns of the matrix A form a basis of $\operatorname{Col}(A)$.
10.15 (a) Reduction of the matrix leads to

$$
\left[\begin{array}{rrr}
1 & -1 & 3 \\
5 & -4 & -4 \\
7 & -6 & 2
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & -1 & 3 \\
0 & 1 & -19 \\
0 & 1 & -19
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & -1 & 3 \\
0 & 1 & -19 \\
0 & 0 & 0
\end{array}\right]
$$

Since the columns 1 and 2 of this matrix contain the leading ones, the vectors

$$
\left[\begin{array}{l}
1 \\
5 \\
7
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{l}
-1 \\
-4 \\
-6
\end{array}\right]
$$

that correspond to the columns 1 and 2 of the matrix A, form a basis of $\operatorname{Col}(A)$.
(b) Reduction of the matrix leads to

$$
\left[\begin{array}{rrrr}
1 & 4 & 5 & 2 \\
2 & 1 & 3 & 0 \\
-1 & 3 & 2 & 2
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 4 & 5 & 2 \\
0 & -7 & -7 & -4 \\
0 & 7 & 7 & 4
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 4 & 5 & 2 \\
0 & 1 & 1 & \frac{4}{7} \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Since the columns 1 and 2 of this matrix contain the leading ones, the vectors

$$
\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{l}
4 \\
1 \\
3
\end{array}\right]
$$

that correspond to the columns 1 and 2 of the matrix A, form a basis of $\operatorname{Col}(A)$.
10.17 (a) Obviously, the mapping T is the left-multiplication by the (standard) matrix

$$
A=\left[\begin{array}{rrrr}
4 & 1 & -2 & -3 \\
2 & 1 & 1 & -4 \\
6 & 0 & -9 & 9
\end{array}\right]
$$

Since $\operatorname{Ker}(T)=\operatorname{Null}(A)$, we reduce the matrix A

$$
\left[\begin{array}{rrrr}
4 & 1 & -2 & -3 \\
2 & 1 & 1 & -4 \\
6 & 0 & -9 & 9
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
6 & 0 & -9 & 9 \\
2 & 1 & 1 & -4 \\
4 & 1 & -2 & -3
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 0 & -\frac{3}{2} & \frac{3}{2} \\
0 & 1 & 4 & -7 \\
0 & 1 & 4 & -9
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 0 & -\frac{3}{2} & 0 \\
0 & 1 & 4 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

So x_{3} is a free variable and each vector in $\operatorname{Null}(A)$ has the form

$$
x_{3}\left[\begin{array}{r}
\frac{3}{2} \\
-4 \\
1 \\
0
\end{array}\right],
$$

where $x_{3} \in \mathbb{R}$. So the vector

$$
\left[\begin{array}{r}
\frac{3}{2} \\
-4 \\
1 \\
0
\end{array}\right]
$$

forms a basis of the kernel of T.
(b) Note that $\operatorname{Im}(T)=\operatorname{Col}(A)$. Since the columns 1, 2 and 4 contain the leading ones in the reduced matrix of A, the vectors

$$
\left[\begin{array}{l}
4 \\
2 \\
6
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{r}
-3 \\
-4 \\
9
\end{array}\right],
$$

which correspond to the columns 1,2 and 3 of the matrix A, form a basis of $\operatorname{Im}(T)$.

