10.11 Let $\underline{v} \in V$ be a vector with $\underline{v} \notin \operatorname{span}\left\{\underline{v}_{1}, \ldots, \underline{v}_{n}\right\}$ and suppose that

$$
c_{0} \underline{v}+c_{1} \underline{v}_{1}+\cdots+c_{n} \underline{v}_{n}=\underline{0},
$$

for some numbers $c_{0}, \ldots c_{n}$. Assume that $c_{0} \neq 0$. Then

$$
\underline{v}=-\frac{c_{1}}{c_{0}} \underline{v}_{1}+\cdots+\left(-\frac{c_{n}}{c_{0}}\right) \underline{v}_{n} .
$$

This is in contradiction with the fact that $\underline{v} \notin \operatorname{span}\left\{\underline{v}_{1}, \ldots, \underline{v}_{n}\right\}$.
So $c_{0}=0$. Then, however, $c_{1} \underline{v}_{1}+\cdots+c_{n} \underline{v}_{n}=\underline{0}$. Because the vectors $\underline{v}_{1}, \ldots, \underline{v}_{n}$ are linearly independent, this implies that $c_{1}=\ldots=c_{n}=0$. So the vectors $\underline{v}, \underline{v}_{1}, \ldots, \underline{v}_{n}$ are linearly independent.
10.13 (a) The set of solutions of the 'system' $3 x-2 y+5 z=0$ is

$$
\left\{\left.\left[\begin{array}{c}
\frac{2}{3} y-\frac{5}{3} z \\
y \\
z
\end{array}\right] \right\rvert\, y, z \in \mathbb{R}\right\}=\left\{\left.y\left[\begin{array}{c}
\frac{2}{3} \\
1 \\
0
\end{array}\right]+z\left[\begin{array}{r}
-\frac{5}{3} \\
0 \\
1
\end{array}\right] \right\rvert\, y, z \in \mathbb{R}\right\}=\operatorname{span}\left\{\left[\begin{array}{c}
\frac{2}{3} \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
-\frac{5}{3} \\
0 \\
1
\end{array}\right]\right\}
$$

Because the two vectors $\left[\begin{array}{l}\frac{2}{3} \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{r}-\frac{5}{3} \\ 0 \\ 1\end{array}\right]$ are linearly independent, they form a basis.
(b) In fact we are dealing with the set

$$
\left\{\left.\left[\begin{array}{r}
2 t \\
-t \\
4 t
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\}=\left\{\left.t\left[\begin{array}{r}
2 \\
-1 \\
4
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\}=\operatorname{span}\left\{\left[\begin{array}{r}
2 \\
-1 \\
4
\end{array}\right]\right\}
$$

Hence, the vector $\left[\begin{array}{r}2 \\ -1 \\ 4\end{array}\right]$ forms a basis.
10.16 Let A be the matrix with as columns the vectors $\underline{v}_{1}, \underline{v}_{2}, \underline{v}_{3}$ and $\underline{v}_{4}: A=\left[\begin{array}{llll}\underline{v}_{1} & \underline{v}_{2} & \underline{v}_{3} & \underline{v}_{4}\end{array}\right]$.

Then $\operatorname{span}\left\{\underline{v}_{1}, \ldots, \underline{v}_{4}\right\}=\operatorname{Col}(A)$. Reduction of the matrix A leads to

$$
\left[\begin{array}{rrrr}
1 & -3 & -1 & -5 \\
0 & 3 & 3 & 3 \\
1 & 7 & 9 & 5 \\
1 & 1 & 3 & -1
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & -3 & -1 & -5 \\
0 & 3 & 3 & 3 \\
0 & 10 & 10 & 10 \\
0 & 4 & 4 & 4
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & -3 & -1 & -5 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 0 & 2 & -2 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Since the columns 1 and 2 of this matrix contain the leading ones, the vectors \underline{v}_{1} and \underline{v}_{2} form a basis of the span of the given vectors.
Furthermore, $\underline{v}_{3}=2 \underline{v}_{1}+\underline{v}_{2}$ and $\underline{v}_{4}=-2 \underline{v}_{1}+\underline{v}_{2}$.
10.18 (a) By using the fact that T is a linear mapping, we obtain

$$
T\left(\underline{e}_{1}\right)=T\left(\underline{v}_{3}\right)=\left[\begin{array}{r}
-1 \\
5 \\
1
\end{array}\right],
$$

$$
T\left(\underline{e}_{2}\right)=T\left(\underline{v}_{2}-\underline{v}_{3}\right)=T\left(\underline{v}_{2}\right)-T\left(\underline{v}_{3}\right)=\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]-\left[\begin{array}{r}
-1 \\
5 \\
1
\end{array}\right]=\left[\begin{array}{r}
4 \\
-5 \\
0
\end{array}\right]
$$

and

$$
T\left(\underline{e}_{3}\right)=T\left(\underline{v}_{1}-\underline{v}_{2}\right)=T\left(\underline{v}_{1}\right)-T\left(\underline{v}_{2}\right)=\left[\begin{array}{r}
2 \\
-1 \\
4
\end{array}\right]-\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
-1 \\
-1 \\
3
\end{array}\right] .
$$

(b) According to part (a), the standard matrix of the mapping T is

$$
A=\left[\begin{array}{lll}
T\left(\underline{e}_{1}\right. & T\left(\underline{e}_{2}\right) & T\left(\underline{e}_{3}\right)
\end{array}\right]=\left[\begin{array}{rrr}
-1 & 4 & -1 \\
5 & -5 & -1 \\
1 & 0 & 3
\end{array}\right]
$$

(c) Since $\operatorname{Ker}(T)=\operatorname{Null}(A)$, we reduce the matrix A

$$
\left[\begin{array}{rrr}
-1 & 4 & -1 \\
5 & -5 & -1 \\
1 & 0 & 3
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & -4 & 1 \\
0 & 15 & -6 \\
0 & 4 & 2
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & -4 & 1 \\
0 & 1 & \frac{1}{2} \\
0 & 15 & -6
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 0 & 3 \\
0 & 1 & \frac{1}{2} \\
0 & 0 & -13 \frac{1}{2}
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Hence, $\operatorname{Ker}(T)=\{\underline{0}\}$.
(d) Since all the columns of the reduced matrix contain a leading one, all the columns of the matrix A form a basis of $\operatorname{Im}(T)$.
10.19 (a) Note that

$$
M P=\left[\begin{array}{lll}
M \underline{p}_{1} & M \underline{p}_{2} & M \underline{p}_{3}
\end{array}\right]=\left[\begin{array}{lll}
\underline{p}_{1} & 0.85 \underline{p}_{2} & 0.75 \underline{p}_{3}
\end{array}\right]
$$

and, if \underline{d}_{i} denotes the i th column of D,

$$
P D=\left[\begin{array}{lll}
P \underline{d}_{1} & P \underline{d}_{2} & P \underline{d}_{3}
\end{array}\right]=\left[\begin{array}{lll}
\underline{p}_{1} & 0.85 \underline{p}_{2} & 0.75 \underline{p}_{3}
\end{array}\right] .
$$

(b) For $n \in \mathbb{N}$ we introduce the statement $\mathcal{P}(n): M^{n}=P D^{n} P^{-1}$.
(1) According to part (a) and the invertibility of matrix P,

$$
M P=P D \Longrightarrow(M P) P^{-1}=(P D) P^{-1} \Longrightarrow M P P^{-1}=P D P^{-1} \Longrightarrow M=P D P^{-1}
$$

Hence, the statement $\mathcal{P}(1)$ is true: $M=P D P^{-1}$.
(2) Let $k \in \mathbb{N}$ and assume that $\mathcal{P}(k)$ is true, that is: $M^{k}=P D^{k} P^{-1}$.

Then

$$
M^{k+1}=M^{k} M=\left[P D^{k} P^{-1}\right]\left[P D P^{-1}\right]=P D^{k} P^{-1} P D P^{-1}=P D^{k} D P^{-1}=P D^{k+1} P^{-1}
$$

This proves that $\mathcal{P}(k+1)$ is true.
According to the Principle of Induction, the statement $\mathcal{P}(n)$ is true for all $n \in \mathbb{N}$.
(c) As D is a diagonal matrix,

$$
D^{n}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0.85^{n} & 0 \\
0 & 0 & 0.75^{n}
\end{array}\right]
$$

As $M^{n}=P D^{n} P^{-1}$, we first determine the matrices P and P^{-1}.
By definition, $P=\left[\begin{array}{lll}\underline{p}_{1} & \underline{p}_{2} & \underline{p}_{3}\end{array}\right]$, where $\underline{p}_{1}, \underline{p}_{2}$ and \underline{p}_{3} are the eigenvalues of the matrix M. According to the example,

$$
\underline{p}_{1}=\left[\begin{array}{c}
5 \\
1.5 \\
1
\end{array}\right]
$$

As \underline{p}_{2} is an eigenvector corresponding to the eigenvalue $\lambda=0.85$, we find \underline{p}_{2} by solving the system $(M-0.85 I) \underline{x}=\underline{0}$. Reduction leads to

$$
\left[\begin{array}{ccc}
0.10 & 0.10 & 0.10 \\
0.05 & -0.05 & 0.05 \\
0 & 0.1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 1 \\
0 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & -2 & 0 \\
0 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

So,

$$
\underline{p}_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

As \underline{p}_{3} is an eigenvector corresponding to the eigenvalue $\lambda=0.75$, we find \underline{p}_{3} by solving the system $(M-0.75 I) \underline{x}=\underline{0}$. Reduction leads to

$$
\left[\begin{array}{ccc}
0.20 & 0.10 & 0.10 \\
0.05 & 0.05 & 0.05 \\
0 & 0.1 & 0.1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
2 & 1 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & 0.5 & 0.5 \\
0 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

So,

$$
\underline{p}_{3}=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

In order to find the inverse of the matrix P we reduce the matrix $\left[\begin{array}{ll}P & I\end{array}\right]$:

$$
\begin{aligned}
{\left[\begin{array}{cccccc}
5 & -1 & 0 & 1 & 0 & 0 \\
1.5 & 0 & -1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1
\end{array}\right] } & \rightarrow\left[\begin{array}{cccccc}
1 & 1 & 1 & 0 & 0 & 1 \\
3 & 0 & -2 & 0 & 2 & 0 \\
5 & -1 & 0 & 1 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 1 & 1 & 0 & 0 & 1 \\
0 & -3 & -5 & 0 & 2 & -3 \\
0 & -6 & -5 & 1 & 0 & -5
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccccccc}
1 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & \frac{5}{3} & 0 & -\frac{2}{3} & 1 \\
0 & 1 & \frac{5}{6} & -\frac{1}{6} & 0 & \frac{5}{6}
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 0 & -\frac{2}{3} & 0 & \frac{2}{3} \\
0 & 1 & \frac{5}{3} & 0 & -\frac{2}{3} \\
1 \\
0 & 0 & -\frac{5}{6} & -\frac{1}{6} & \frac{2}{3} \\
-\frac{1}{6}
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccccccc}
1 & 0 & -\frac{2}{3} & 0 & \frac{2}{3} & 0 \\
0 & 1 & \frac{5}{3} & 0 & -\frac{2}{3} & 1 \\
0 & 0 & 1 & \frac{1}{5} & -\frac{4}{5} & \frac{1}{5}
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 0 & 0 & \frac{2}{15} & \frac{2}{15} & \frac{2}{15} \\
0 & 1 & 0 & -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\
0 & 0 & 1 & \frac{1}{5} & -\frac{4}{5} & \frac{1}{5}
\end{array}\right]
\end{aligned}
$$

As

$$
P^{-1}=\left[\begin{array}{ccc}
\frac{2}{15} & \frac{2}{15} & \frac{2}{15} \\
-\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\
\frac{1}{5} & -\frac{4}{5} & \frac{1}{5}
\end{array}\right]
$$

we obtain

$$
\begin{aligned}
M^{n} & =P D^{n} P^{-1}=\left[\begin{array}{ccc}
5 & -0.85^{n} & 0 \\
\frac{3}{2} & 0 & -0.75^{2} \\
1 & 0.85^{n} & 0.75^{n}
\end{array}\right]\left[\begin{array}{ccc}
\frac{2}{15} & \frac{2}{15} & \frac{2}{15} \\
-\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\
\frac{1}{5} & -\frac{4}{5} & \frac{1}{5}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\frac{2}{3}+\frac{1}{3} \times 0.85^{n} & \frac{2}{3}-\frac{2}{3} \times 0.85^{n} & \frac{2}{3}-\frac{2}{3} \times 0.85^{n} \\
\frac{1}{5}-\frac{1}{5} \times 0.75^{n} & \frac{1}{5}+\frac{4}{5} \times 0.75^{n} & \frac{1}{5}-\frac{1}{5} \times 0.75^{n} \\
\frac{2}{15}-\frac{1}{3} \times 0.85^{n}+\frac{1}{5} \times 0.75^{n} & \frac{2}{15}+\frac{2}{3} \times 0.85^{n}-\frac{4}{5} \times 0.75^{n} & \frac{2}{15}+\frac{2}{3} \times 0.85^{n}+\frac{1}{5} \times 0.75^{n}
\end{array}\right] .
\end{aligned}
$$

10.20 As $A=P D P^{-1}$ for some invertible matrix P and some diagonal matrix D, it follows that $A P=P D$. If we indicate the columns of matrix P by $\underline{p}_{1}, \underline{p}_{2}, \ldots, \underline{p}_{n}$ and if we assume that $\lambda_{1}, \ldots, \lambda_{n}$ are the numbers on the main diagonal of D, then it holds that

$$
A P=\left[\begin{array}{llll}
A \underline{p}_{1} & A \underline{p}_{2} & \cdots & A \underline{p}_{n}
\end{array}\right]
$$

and

$$
P D=\left[\begin{array}{llll}
\lambda_{1} \underline{p}_{1} & \lambda_{2} \underline{p}_{2} & \cdots & \lambda_{n} \underline{p}_{n}
\end{array}\right] .
$$

From this it follows that

$$
A \underline{p}_{1}=\lambda_{1} \underline{p}_{1}, \quad A \underline{p}_{2}=\lambda_{2} \underline{p}_{2}, \ldots, A \underline{p}_{n}=\lambda_{n} \underline{p}_{n} .
$$

Since P is invertible, none of the columns of P is a zero vector. This means that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are eigenvalues of A, and that $\underline{p}_{1}, \underline{p}_{2}, \ldots, \underline{p}_{n}$ are the corresponding eigenvectors of A. Since P is invertible, Theorem 3 implies that the columns of P are linearly independent. Therefore matrix A has n linearly independent eigenvectors.

