
10.11 Let v ∈ V be a vector with v /∈ span{v1, . . . , vn} and suppose that

c0 v + c1 v1 + · · ·+ cn vn = 0,

for some numbers c0, . . . cn. Assume that c0 6= 0. Then

v = −
c1
c0

v1 + · · ·+
(

−
cn
c0

)

v
n
.

This is in contradiction with the fact that v /∈ span{v1, . . . , vn}.

So c0 = 0. Then, however, c1 v1 + · · · + cn vn = 0. Because the vectors v1, . . . , vn are linearly

independent, this implies that c1 = . . . = cn = 0. So the vectors v, v1, . . . , vn are linearly independent.

10.13 (a) The set of solutions of the ’system’ 3x− 2y + 5z = 0 is
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Because the two vectors
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are linearly independent, they form a basis.

(b) In fact we are dealing with the set
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Hence, the vector
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10.16 Let A be the matrix with as columns the vectors v1, v2, v3 and v4: A = [ v1 v2 v3 v4 ].

Then span{v1, . . . , v4} = Col(A). Reduction of the matrix A leads to
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Since the columns 1 and 2 of this matrix contain the leading ones, the vectors v1 and v2 form a basis

of the span of the given vectors.

Furthermore, v3 = 2 v1 + v2 and v4 = −2 v1 + v2.



10.18 (a) By using the fact that T is a linear mapping, we obtain

T (e1) = T (v3) =
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(b) According to part (a), the standard matrix of the mapping T is

A = [T (e1 T (e2) T (e3) ] =
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(c) Since Ker(T ) = Null(A), we reduce the matrix A
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Hence, Ker(T ) = {0}.

(d) Since all the columns of the reduced matrix contain a leading one, all the columns of the matrix A

form a basis of Im(T ).

10.19 (a) Note that

MP = [Mp
1

Mp
2

Mp
3
] = [ p

1
0.85 p

2
0.75 p

3
]

and, if d
i
denotes the ith column of D,

PD = [Pd1 Pd2 Pd3 ] = [ p
1

0.85 p
2

0.75 p
3
] .

(b) For n ∈ IN we introduce the statement P(n): Mn = PDnP−1.

(1) According to part (a) and the invertibility of matrix P ,

MP = PD =⇒ (MP )P−1 = (PD)P−1 =⇒ MPP−1 = PDP−1 =⇒ M = PDP−1.

Hence, the statement P(1) is true: M = PDP−1.

(2) Let k ∈ IN and assume that P(k) is true, that is: Mk = PDkP−1.

Then

Mk+1 = MkM =
[

PDkP−1
][

PDP−1
]

= PDkP−1PDP−1 = PDkDP−1 = PDk+1P−1.

This proves that P(k + 1) is true.

According to the Principle of Induction, the statement P(n) is true for all n ∈ IN.



(c) As D is a diagonal matrix,
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As Mn = PDnP−1, we first determine the matrices P and P−1.
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2
is an eigenvector corresponding to the eigenvalue λ = 0.85, we find p

2
by solving the system

(M − 0.85I)x = 0. Reduction leads to
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As p
3
is an eigenvector corresponding to the eigenvalue λ = 0.75, we find p

3
by solving the system

(M − 0.75I)x = 0. Reduction leads to
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In order to find the inverse of the matrix P we reduce the matrix
[
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:
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we obtain

Mn = PDnP−1 =
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10.20 As A = PDP−1 for some invertible matrix P and some diagonal matrix D, it follows that AP = PD.

If we indicate the columns of matrix P by p
1
, p

2
, . . . , p

n
and if we assume that λ1, . . . , λn are the

numbers on the main diagonal of D, then it holds that

AP = [Ap
1
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2

· · · Ap
n
]

and

PD = [λ1 p
1

λ2 p
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· · · λn p
n
] .

From this it follows that

Ap
1
= λ1 p

1
, Ap

2
= λ2 p

2
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n
= λn p

n
.

Since P is invertible, none of the columns of P is a zero vector. This means that λ1, λ2, . . . , λn are

eigenvalues of A, and that p
1
, p

2
, . . . , p

n
are the corresponding eigenvectors of A. Since P is invertible,

Theorem 3 implies that the columns of P are linearly independent. Therefore matrix A has n linearly

independent eigenvectors.


