11.4 The polynomials $p_{1}: x \rightarrow x, p_{2}: x \rightarrow x^{2}$ and $p_{3}: x \rightarrow x^{3}$ form a basis of the subspace V. They are linearly independent and $V=\operatorname{span}\left\{p_{1}, p_{2}, p_{3}\right\}$. So $\operatorname{dim} V=3$.
11.5 Note that

$$
\begin{aligned}
W & =\left\{\left.a\left[\begin{array}{l}
1 \\
5 \\
0 \\
0
\end{array}\right]+b\left[\begin{array}{r}
-3 \\
0 \\
1 \\
0
\end{array}\right]+c\left[\begin{array}{r}
6 \\
0 \\
-2 \\
0
\end{array}\right]+d\left[\begin{array}{r}
0 \\
4 \\
-1 \\
5
\end{array}\right] \right\rvert\, a, b, c, d \in \mathbb{R}\right\} \\
& =\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
5 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
-3 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
6 \\
0 \\
-2 \\
0
\end{array}\right],\left[\begin{array}{r}
0 \\
4 \\
-1 \\
5
\end{array}\right]\right\} .
\end{aligned}
$$

In order to check the linear independency of the four vectors that span the subspace W, we reduce the matrix that can be constructed by means of these vectors:

$$
A=\left[\begin{array}{rrrr}
1 & -3 & 6 & 0 \\
5 & 0 & 0 & 4 \\
0 & 1 & -2 & -1 \\
0 & 0 & 0 & 5
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & -3 & 6 & 0 \\
0 & 15 & -30 & 4 \\
0 & 1 & -2 & -1 \\
0 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & -3 & 6 & 0 \\
0 & 1 & -2 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Obviously, the vectors in column 1, 2 and 4 of the matrix A form a basis of W. So $\operatorname{dim} W=3$.
11.6 If $W=V$, then, obviously, $\operatorname{dim} W=\operatorname{dim} V$.

Now suppose that $\operatorname{dim} W=\operatorname{dim} V=n$.
Assume that the vectors $\underline{w}_{1}, \ldots, \underline{w}_{n}$ form a basis of the subspace W. Then the vectors $\underline{w}_{1}, \ldots, \underline{w}_{n}$ are linearly independent vectors contained in V. So, according to Theorem 5 , these vectors also form a basis of the space V. Hence, $W=\operatorname{span}\left\{\underline{w}_{1}, \ldots, \underline{w}_{n}\right\}=V$.
11.7 We give a counterexample. Let

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

Then the matrix is fully reduced, the number of rows is $m=2$ and the number of nonzero rows is $k=2$. So $m-k=0$. However, $\operatorname{dim} \operatorname{Null}(A)=1 \neq 0$.

On the contrary, according to Theorem $9, \operatorname{dim} \operatorname{Null}(\mathrm{~A})=n-k$.
11.8 (a) Because $\mathbb{P} \subseteq \mathbb{F}$ is non-empty and the sum of two polynomial and a multiple of a polynomial again is a polynomial, \mathbb{P} is a linear subspace of the space \mathbb{F}.
(b) Let, for $i \in \mathbb{N}, p_{i}$ be the polynomial defined by

$$
p_{i}(x)=x^{i} .
$$

Further, p_{0} is the polynomial defined by $p_{0}(x)=1$.
These polynomials are in \mathbb{P} are linearly independent as we will prove now.
If $c_{0} p_{0}+c_{1} p_{1}+\cdots=0$, for some numbers c_{0}, c_{1}, \ldots, then for all $x \in \mathbb{R}$

$$
c_{0} p_{0}(x)+c_{1} p_{1}(x)+\cdots=0 \Longrightarrow c_{0}+c_{1} x+c_{2} x^{2}+\cdots=0 .
$$

Hence, $c_{0}=c_{1}=\ldots=0$.

Also these polynomials span the space \mathbb{P}.
Let $p \in \mathbb{P}$, say p is a polynomial of degree $n \in \mathbb{N}$. Then numbers $a_{0}, a_{1}, \ldots, a_{n}$ exists such that, for all $x \in \mathbb{R}$,

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=a_{0} p_{0}(x)+\cdots+a_{n} p_{n}(x) .
$$

So $p=a_{0} p_{0}+\cdots+a_{n} p_{n}$.
11.9 (Partial) reduction of the matrix A leads to

$$
\left[\begin{array}{rrrr}
1 & 4 & 5 & 2 \\
2 & 1 & 3 & 0 \\
-1 & 3 & 2 & 2
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 4 & 5 & 2 \\
0 & -7 & -7 & -4 \\
0 & 7 & 7 & 4
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 4 & 5 & 2 \\
0 & 7 & 7 & 4 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Obviously, $\operatorname{rank} A=2$ and $\operatorname{dim} \operatorname{Null}(A)=4-2=2$. Note that the number of free variables is equal to 2 .
11.10 (a) If the matrix A is invertible, $\operatorname{then} \operatorname{rank}(A)=4$ en $\operatorname{dim} \operatorname{Null}(A)=4-4=0$.
(b) The rank of a matrix is equal to the number of nonzero rows in the reduced matrix. So the rank of a 3×5 matrix is at most equal to 3 . In that case $\operatorname{dim} \operatorname{Null}(A)=5-3=2$.
(c) The rank of a matrix is at most equal to the number of leading ones in the reduced matrix. So the rank of a 5×3 matrix is at most equal to 3 . In that case $\operatorname{dim} \operatorname{Null}(A)=3-3=0$.
11.12 If $t=1$, the matrix is

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] .
$$

So rank $A=1$. If $t \neq 1$, reduction leads to

$$
\left[\begin{array}{ccc}
1 & 1 & t \\
1 & t & 1 \\
t & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 1 & t \\
0 & t-1 & 1-t \\
0 & 1-t & 1-t^{2}
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 1 & t \\
0 & 1 & -1 \\
0 & 1 & 1+t
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & t+1 \\
0 & 1 & -1 \\
0 & 0 & 2+t
\end{array}\right]
$$

If $t=-2$, the reduced matrix is

$$
\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

and $\operatorname{rank} A=2$.
If $t \neq-2$, further reduction leads to the matrix

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

So rank $A=3$.

