
11.4 The polynomials p1:x → x, p2:x → x2 and p3:x → x3 form a basis of the subspace V . They are

linearly independent and V = span{p1, p2, p3}. So dimV = 3.

11.5 Note that
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In order to check the linear independency of the four vectors that span the subspace W , we reduce

the matrix that can be constructed by means of these vectors:

A =











1 −3 6 0

5 0 0 4

0 1 −2 −1

0 0 0 5











→











1 −3 6 0

0 15 −30 4

0 1 −2 −1

0 0 0 1











→











1 −3 6 0

0 1 −2 0

0 1 −2 0

0 0 0 1











→











1 0 0 0

0 1 −2 0

0 0 0 1

0 0 0 0











.

Obviously, the vectors in column 1, 2 and 4 of the matrix A form a basis of W . So dimW = 3.

11.6 If W = V , then, obviously, dimW = dimV .

Now suppose that dimW = dimV = n.

Assume that the vectors w
1
, . . . , w

n
form a basis of the subspace W . Then the vectors w

1
, . . . , w

n

are linearly independent vectors contained in V . So, according to Theorem 5, these vectors also form

a basis of the space V . Hence, W = span{w
1
, . . . , w

n
} = V .

11.7 We give a counterexample. Let

A =

[

1 0 1

0 1 1

]

.

Then the matrix is fully reduced, the number of rows is m = 2 and the number of nonzero rows is

k = 2. So m− k = 0. However, dimNull(A) = 1 6= 0.

On the contrary, according to Theorem 9, dimNull(A) = n− k.

11.8 (a) Because IP ⊆ IF is non-empty and the sum of two polynomial and a multiple of a polynomial again

is a polynomial, IP is a linear subspace of the space IF.

(b) Let, for i ∈ IN, pi be the polynomial defined by

pi(x) = xi.

Further, p0 is the polynomial defined by p0(x) = 1.

These polynomials are in IP are linearly independent as we will prove now.

If c0p0 + c1p1 + · · · = 0, for some numbers c0, c1, . . ., then for all x ∈ IR

c0p0(x) + c1p1(x) + · · · = 0 =⇒ c0 + c1x+ c2x
2 + · · · = 0.

Hence, c0 = c1 = . . . = 0.



Also these polynomials span the space IP.

Let p ∈ IP, say p is a polynomial of degree n ∈ IN. Then numbers a0, a1, . . . , an exists such that, for

all x ∈ IR,

p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n = a0p0(x) + · · ·+ anpn(x).

So p = a0p0 + · · ·+ anpn.

11.9 (Partial) reduction of the matrix A leads to







1 4 5 2

2 1 3 0

−1 3 2 2






→







1 4 5 2

0 −7 −7 −4

0 7 7 4






→







1 4 5 2

0 7 7 4

0 0 0 0






.

Obviously, rank A = 2 and dimNull(A) = 4− 2 = 2. Note that the number of free variables is equal

to 2.

11.10 (a) If the matrix A is invertible, then rank(A) = 4 en dimNull(A) = 4− 4 = 0.

(b) The rank of a matrix is equal to the number of nonzero rows in the reduced matrix. So the rank of

a 3× 5 matrix is at most equal to 3. In that case dimNull(A) = 5− 3 = 2.

(c) The rank of a matrix is at most equal to the number of leading ones in the reduced matrix. So the

rank of a 5× 3 matrix is at most equal to 3. In that case dimNull(A) = 3− 3 = 0.

11.12 If t = 1, the matrix is






1 1 1

1 1 1

1 1 1






.

So rank A = 1. If t 6= 1, reduction leads to







1 1 t

1 t 1

t 1 1






→







1 1 t

0 t− 1 1− t

0 1− t 1− t2






→







1 1 t

0 1 −1

0 1 1 + t






→







1 0 t+ 1

0 1 −1

0 0 2 + t






.

If t = −2, the reduced matrix is






1 0 −1

0 1 −1

0 0 0







and rank A = 2.

If t 6= −2, further reduction leads to the matrix







1 0 0

0 1 0

0 0 1






.

So rank A = 3.


