11.4 The polynomials $p_1: x \to x$, $p_2: x \to x^2$ and $p_3: x \to x^3$ form a basis of the subspace V. They are linearly independent and $V = \text{span}\{p_1, p_2, p_3\}$. So dim V = 3.

11.5 Note that

$$W = \left\{ a \begin{bmatrix} 1\\5\\0\\0 \end{bmatrix} + b \begin{bmatrix} -3\\0\\1\\0 \end{bmatrix} + c \begin{bmatrix} 6\\0\\-2\\0 \end{bmatrix} + d \begin{bmatrix} 0\\4\\-1\\5 \end{bmatrix} \middle| a, b, c, d \in \mathbb{R} \right\}$$
$$= \operatorname{span} \left\{ \begin{bmatrix} 1\\5\\0\\0 \end{bmatrix}, \begin{bmatrix} -3\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 6\\0\\-2\\0 \end{bmatrix}, \begin{bmatrix} 6\\0\\-2\\0 \end{bmatrix}, \begin{bmatrix} 4\\-1\\5 \end{bmatrix} \right\}.$$

In order to check the linear independency of the four vectors that span the subspace W, we reduce the matrix that can be constructed by means of these vectors:

	Γ1	-3	6	٦0	Γ1	-3	6	0		Γ1	-3	6	0]		Γ1	0	0	07	
A =	5	0	0	4	0	15	-30	4	\rightarrow	0	1	-2	0	$\begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \rightarrow \begin{bmatrix} \\ \\ \end{bmatrix}$	0	1	-2	0	$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$
	0	1	-2	-1	$\rightarrow \mid 0$	1	-2	-1		0	1	-2	0		0	0	0	1	
	0	0	0	5	Lo	0	0	1		0	0	0	1		0	0	0	0	
01 ·	-				-							-			-				

Obviously, the vectors in column 1, 2 and 4 of the matrix A form a basis of W. So dim W = 3.

11.6 If W = V, then, obviously, dim $W = \dim V$.

Now suppose that $\dim W = \dim V = n$.

Assume that the vectors $\underline{w}_1, \ldots, \underline{w}_n$ form a basis of the subspace W. Then the vectors $\underline{w}_1, \ldots, \underline{w}_n$ are linearly independent vectors contained in V. So, according to Theorem 5, these vectors also form a basis of the space V. Hence, $W = \operatorname{span}\{\underline{w}_1, \ldots, \underline{w}_n\} = V$.

11.7 We give a counterexample. Let

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}.$$

Then the matrix is fully reduced, the number of rows is m = 2 and the number of nonzero rows is k = 2. So m - k = 0. However, dim Null $(A) = 1 \neq 0$. On the contrary, according to Theorem 9, dim Null(A) = n - k.

11.8 (a) Because $\mathbb{P} \subseteq \mathbb{F}$ is non-empty and the sum of two polynomial and a multiple of a polynomial again is a polynomial, \mathbb{P} is a linear subspace of the space \mathbb{F} .

2

(b) Let, for $i \in \mathbb{N}$, p_i be the polynomial defined by

$$p_i(x) = x^i.$$

Further, p_0 is the polynomial defined by $p_0(x) = 1$.

These polynomials are in \mathbb{P} are linearly independent as we will prove now.

If $c_0p_0 + c_1p_1 + \cdots = 0$, for some numbers c_0, c_1, \ldots , then for all $x \in \mathbb{R}$

$$c_0 p_0(x) + c_1 p_1(x) + \dots = 0 \Longrightarrow c_0 + c_1 x + c_2 x^2 + \dots = 0.$$

Hence, $c_0 = c_1 = \ldots = 0$.

Also these polynomials span the space \mathbb{P} .

Let $p \in \mathbb{P}$, say p is a polynomial of degree $n \in \mathbb{N}$. Then numbers a_0, a_1, \ldots, a_n exists such that, for all $x \in \mathbb{R}$,

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = a_0 p_0(x) + \dots + a_n p_n(x).$$

So $p = a_0 p_0 + \dots + a_n p_n$.

11.9 (Partial) reduction of the matrix A leads to

1	4	5	2		[1	4	5	2]		[1	4	5	2]	
2	1	3	0	\rightarrow	0	-7	-7	-4	\rightarrow	0	7	7	4	
-1	3	2	2		0	7	7	4		0	0	0	0	

Obviously, rank A = 2 and dim Null(A) = 4 - 2 = 2. Note that the number of free variables is equal to 2.

11.10 (a) If the matrix A is invertible, then rank(A) = 4 en dim Null(A) = 4 - 4 = 0.

- (b) The rank of a matrix is equal to the number of nonzero rows in the reduced matrix. So the rank of a 3×5 matrix is at most equal to 3. In that case dim Null(A) = 5 3 = 2.
- (c) The rank of a matrix is at most equal to the number of leading ones in the reduced matrix. So the rank of a 5×3 matrix is at most equal to 3. In that case dim Null(A) = 3 3 = 0.

11.12 If t = 1, the matrix is

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

So rank A = 1. If $t \neq 1$, reduction leads to

$$\begin{bmatrix} 1 & 1 & t \\ 1 & t & 1 \\ t & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & t \\ 0 & t-1 & 1-t \\ 0 & 1-t & 1-t^2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & t \\ 0 & 1 & -1 \\ 0 & 1 & 1+t \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & t+1 \\ 0 & 1 & -1 \\ 0 & 0 & 2+t \end{bmatrix}$$

If t = -2, the reduced matrix is

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

and rank A = 2.

If $t \neq -2$, further reduction leads to the matrix

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

So rank A = 3.