11.4 The polynomials py:x — , p2:x — 2 and p3:x — 23 form a basis of the subspace V. They are

linearly independent and V' = span{p1, p2,p3s}. So dimV = 3.

11.5 Note that

1 -3 6 0
5 0 0 4
W=<a 0 +0b 1 +c s +d 4 a,b,c,d € R
0 | 0 0 )
M1 -3 6 07
5 0 0 4
I N V0 R R R 'S R
0 0 0 5]

In order to check the linear independency of the four vectors that span the subspace W, we reduce

the matrix that can be constructed by means of these vectors:

1 -3 6 0 1 -3 6 0 1 -3 6 0 1 0 0 0

5 0 0 4 0 15 =30 4 0 1 -2 0 0 1 -2 0
A= — — —

0 1 -2 -1 0o 1 -2 -1 0 1 -2 0 0 0 1

0o 0 0 5 0 0 0 1 0 0 o0 1 0 0 0

Obviously, the vectors in column 1, 2 and 4 of the matrix A form a basis of W. So dim W = 3.

11.6 If W =V, then, obviously, dimW = dim V.
Now suppose that dimW = dimV = n.
Assume that the vectors wy,...,w, form a basis of the subspace W. Then the vectors wy,...,w,

are linearly independent vectors contained in V. So, according to Theorem 5, these vectors also form

a basis of the space V. Hence, W = span{w,,...,w,} = V.

1 0 1
A= .
[0 1 1]

Then the matrix is fully reduced, the number of rows is m = 2 and the number of nonzero rows is

k=2. Som —k =0. However, dim Null(4) = 1 # 0.

11.7 We give a counterexample. Let

On the contrary, according to Theorem 9, dim Null(A) =n — k.

11.8 (a) Because IP C TF is non-empty and the sum of two polynomial and a multiple of a polynomial again
is a polynomial, IP is a linear subspace of the space IF.
(b) Let, for i € IN, p; be the polynomial defined by
pi(z) = .
Further, pg is the polynomial defined by po(x) = 1.
These polynomials are in IP are linearly independent as we will prove now.
If copog + c1p1 + - - - = 0, for some numbers cg, cq, ..., then for all x € IR
copo(x) +epr(x) +---=0=co +c1z +cpx® +--- = 0.

Hence, co =c1 =...=0.



11.9

11.12

Also these polynomials span the space IP.
Let p € IP, say p is a polynomial of degree n € IN. Then numbers ag, a1, ..., a, exists such that, for
all z € R,

P(E) = a0+ a1 + azz® + -+ + ana™ = aopo(e) + -+ + aupa(a).

So p = agpo + - - + anPn-

(Partial) reduction of the matrix A leads to

1 4 5 2 1 4 5 2 1 4 5 2
21 3 0|—=|0 -7 =7 4| =0 7 7 4
-1 3 2 2 0 7 7T 4 0 0 0 O

Obviously, rank A = 2 and dim Null(A) = 4 — 2 = 2. Note that the number of free variables is equal
to 2.

If the matrix A is invertible, then rank(A4) =4 en dim Null(A) =4 —4 = 0.
The rank of a matrix is equal to the number of nonzero rows in the reduced matrix. So the rank of
a 3 X 5 matrix is at most equal to 3. In that case dimNull(4) =5 -3 = 2.
The rank of a matrix is at most equal to the number of leading ones in the reduced matrix. So the

rank of a 5 x 3 matrix is at most equal to 3. In that case dim Null(4) =3 -3 = 0.

If t = 1, the matrix is

1 1 1
1 1 1
1 1 1
So rank A = 1. If t # 1, reduction leads to
1 1 ¢ 1 1 t 1 1 t 1 0 t+1
1 ¢+ 1|—=»|(0 ¢t-1 1-t|—=1]|0 1 -1 |—=(0 1 -1
t 1 1 0 1—t 1—¢2 0 1 1+t 0 0 2+t
If t = —2, the reduced matrix is
1 0 -1
0 1 -1
0 0 O
and rank A = 2.

If ¢t # —2, further reduction leads to the matrix

0 0
0 1 0
0 0

So rank A = 3.



