11.1 The proof consists of two parts.
(1) Assume that the vectors $\underline{v}_{1}, \underline{v}_{2}, \ldots, \underline{v}_{k}$ are linearly independent. We will show that the vectors $T\left(\underline{v}_{1}\right), \ldots, T\left(\underline{v}_{k}\right)$ are linearly independent.
Suppose that $c_{1} T\left(\underline{v}_{1}\right)+\cdots+c_{k} T\left(\underline{v}_{k}\right)=\underline{0}$, for some numbers c_{1}, \ldots, c_{k}.
Because the mapping T is a linear mapping,

$$
\underline{0}=c_{1} T\left(\underline{v}_{1}\right)+\cdots+c_{k} T\left(\underline{v}_{k}\right)=T\left(c_{1} \underline{v}_{1}+\cdots+c_{k} \underline{v}_{k}\right) .
$$

Because the mapping T is one-to-one, only the zero vector (in V) is mapped onto the zero vector (in \mathbb{R}^{n}). So we may conclude that

$$
c_{1} \underline{v}_{1}+\cdots+c_{k} \underline{v}_{k}=\underline{0} .
$$

The fact that the vectors $\underline{v}_{1}, \ldots, \underline{v}_{k}$ are linearly independent, implies that $c_{1}=\ldots=c_{k}=0$. In other words: the vectors $T\left(\underline{v}_{1}\right), \ldots, T\left(\underline{v}_{k}\right)$ are linearly independent.
(2) Assume that the vectors $T\left(\underline{v}_{1}\right), \ldots, T\left(\underline{v}_{k}\right)$ are linearly independent. We will show that the vectors $\underline{v}_{1}, \ldots, \underline{v}_{k}$ are linearly independent.
Suppose that $c_{1} \underline{v}_{1}+\cdots+c_{k} \underline{v}_{k}=\underline{0}$, for some numbers c_{1}, \ldots, c_{k}.
Then $T\left(c_{1} \underline{v}_{1}+\cdots+c_{k} \underline{v}_{k}\right)=\underline{0}$ and the fact that the mapping T is linear, imply that

$$
c_{1} T\left(\underline{v}_{1}\right)+\cdots+c_{k} T\left(\underline{v}_{k}\right)=\underline{0} .
$$

Since the vectors $T\left(\underline{v}_{1}\right), \ldots, T\left(\underline{v}_{k}\right)$ are linearly independent, it follows that $c_{1}=\ldots=c_{k}=0$. In other words: the vectors $\underline{v}_{1}, \ldots, \underline{v}_{k}$ are linearly independent.
11.2 (a) If $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{3}$ is the coordinate mapping with respect to the usual basis of \mathbb{P}_{2} formed by the polynomials $p_{1}: x \rightarrow 1, p_{2}: x \rightarrow x$ and $p_{3}: x \rightarrow x^{2}$, then

$$
\begin{aligned}
& T\left(q_{1}\right)=T\left(p_{1}+p_{3}\right)=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \\
& T\left(q_{2}\right)=T\left(p_{2}+p_{3}\right)=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
\end{aligned}
$$

and

$$
T\left(q_{3}\right)=T\left(p_{1}+2 p_{2}+p_{3}\right)=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] .
$$

(b) Note that the vectors $T\left(q_{1}\right), T\left(q_{2}\right)$ and $T\left(q_{3}\right)$ are linearly independent, because the matrix $A=\left[\begin{array}{lll}T\left(q_{1}\right) & T\left(q_{2}\right) & T\left(q_{3}\right)\end{array}\right]$ is invertible, as can be proved as follows:

$$
\operatorname{det}\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2 \\
1 & 1 & 1
\end{array}\right]=\operatorname{det}\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]+\operatorname{det}\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]=-1-1=-2 \neq 0
$$

Then, according to Exercise 11.1, the polynomials q_{1}, q_{2} and q_{3} are linearly independent.
(c) Because the matrix A is invertible, $\operatorname{Col}(A)=\mathbb{R}^{3}$. Hence, the vectors $T\left(q_{1}\right), T\left(q_{2}\right)$ and $T\left(q_{3}\right)$, which correspond to the columns of the matrix A, span the space \mathbb{R}^{3}.
So if $p \in \mathbb{P}_{2}$, say $p: x \rightarrow a+b x+c x^{2}$, then $T(p)$ can be written as a linear combination of the vectors $T\left(q_{1}\right), T\left(q_{2}\right)$ and $T\left(q_{3}\right)$: say $T(p)=c_{1} T\left(q_{1}\right)+c_{2} T\left(q_{2}\right)+c_{3} T\left(q_{3}\right)$. This implies, by the linearity of the mapping T, that

$$
T(p)=T\left(c_{1} q_{1}+c_{2} q_{2}+c_{3} q_{3}\right)
$$

The fact that the mapping T is one-to-one implies that

$$
p=c_{1} q_{1}+c_{2} q_{2}+c_{3} q_{3}
$$

This proves that the polynomials q_{1}, q_{2} and q_{3} span the space \mathbb{P}_{2}.
(d) Let q be the polynomial in \mathbb{P}_{2} defined by $q(x)=1+4 x+7 x^{2}$.

In order to write the vector $T(q)$ as a linear combination of the vectors $T\left(q_{1}\right), T\left(q_{2}\right)$ and $T\left(q_{3}\right)$, we reduce the matrix

$$
\begin{aligned}
{\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 2 & 4 \\
1 & 1 & 1 & 7
\end{array}\right] } & \rightarrow\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 2 & 4 \\
0 & 1 & 0 & 6
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 0 & 1 & 1 \\
0 & 1 & 2 & 4 \\
0 & 0 & -2 & 2
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 0 & 1 & 1 \\
0 & 1 & 2 & 4 \\
0 & 0 & 1 & -1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrr}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 6 \\
0 & 0 & 1 & -1
\end{array}\right] .
\end{aligned}
$$

So $T(q)=2 T\left(q_{1}\right)+6 T\left(q_{2}\right)-T\left(q_{3}\right)=T\left(2 q_{1}+6 q_{2}-q_{3}\right)$. Since the mapping T is one-to-one, this implies that $q=2 q_{1}+6 q_{2}-q_{3}$. So the coordinate vector of q with respect to the basis of \mathbb{P}_{2} formed by the polynomials q_{1}, q_{2} and q_{3} is

$$
\left[\begin{array}{r}
2 \\
6 \\
-1
\end{array}\right] .
$$

11.3 The proof consists of three parts.
(1) Let \underline{u} and \underline{u}^{\prime} be vectors in U. Then, the fact that the mappings S and T are linear implies that

$$
\begin{aligned}
(T \circ S)\left(\underline{u}+\underline{u}^{\prime}\right) & =T\left(S\left(\underline{u}+\underline{u}^{\prime}\right)\right)=T\left(S(\underline{u})+S\left(\underline{u}^{\prime}\right)\right)=T(S(\underline{u}))+T\left(S\left(\underline{u}^{\prime}\right)\right) \\
& =(T \circ S)(\underline{u})+(T \circ S)\left(\underline{u}^{\prime}\right) .
\end{aligned}
$$

Similarly, for all vectors \underline{u} in U and all scalars c,

$$
(T \circ S)(c \underline{u})=c(T \circ S)(\underline{u}) .
$$

Hence, the mapping $T \circ S$ is linear.
(2) Assume that $(T \circ S)(\underline{u})=(T \circ S)\left(\underline{u}^{\prime}\right)$.

Then $T(S(\underline{u}))=T\left(S\left(\underline{u}^{\prime}\right)\right)$. As the mapping T is one-to-one, this implies that $S(\underline{u})=S\left(\underline{u}^{\prime}\right)$. As the mapping S is one-to-one, this implies that $\underline{u}=\underline{u}^{\prime}$.

Hence, the mapping $T \circ S$ is one-to-one.
(3) Assume that \underline{w} is a vector in W. We will show that this vector is the image under the mapping $T \circ S$ of at least one vector in the vector space U.

As the mapping T is surjective, there exists at least one vector, say \underline{v}, in the vector space V such that $T(\underline{v})=\underline{w}$. As the mapping S is surjective, there exists at least one vector, say \underline{u}, in the vector space U such that $S(\underline{u})=\underline{v}$. Then, however,

$$
(T \circ S)(\underline{u})=T(S(\underline{u}))=T(\underline{v})=\underline{w} .
$$

In other words: the mapping $T \circ S$ is surjective.
According to (1), (2) and (3), the mapping $T \circ S$ is an isomorphism.
11.11 Because $\operatorname{dim} \operatorname{Col}(A) \leq n$ and $\operatorname{dim} \operatorname{Row}(\mathrm{A}) \leq m$, the rank of a matrix is at most equal to $\min \{m, n\}$.

If $n \leq m$, then rank $A \leq n$ and $\operatorname{dim} \operatorname{Null}(A) \geq n-n=0$.
If $m \leq n$, then $\operatorname{rank} A \leq m$ and $\operatorname{dim} \operatorname{Null}(A) \geq n-m$.
11.13 (a) By using the definition Q we find that

$$
Q^{2}=(I-P)^{2}=(I-P)(I-P)=I-P-P I+P^{2}=I-2 P+P=I-P=Q
$$

and

$$
Q P=(I-P) P=P-P^{2}=P-P=O .
$$

(b) If $\underline{y} \in \operatorname{Col}(P)$, then there exists an \underline{x} such that $\underline{y}=P \underline{x}$. This however means that

$$
Q \underline{y}=(I-P) \underline{y}=\underline{y}-P \underline{y}=P \underline{x}-P^{2} \underline{x}=P \underline{x}-P \underline{x}=\underline{0} .
$$

So $\underline{y} \in \operatorname{Null}(Q)$.
If $\underline{y} \in \operatorname{Null}(Q)$, then

$$
Q \underline{y}=\underline{0} \Longrightarrow(I-P) \underline{y}=\underline{0} \Longrightarrow \underline{y}-P \underline{y}=\underline{0} \Longrightarrow \underline{y}=P \underline{y} .
$$

Hence $\underline{y} \in \operatorname{Col}(P)$.
(c) The Dimension Theorem and part (b) imply that

$$
n=\operatorname{rank}(Q)+\operatorname{dim} \operatorname{Null}(Q)=\operatorname{rank}(Q)+\operatorname{dim} \operatorname{Col}(P)=\operatorname{rank}(Q)+\operatorname{rank}(P)
$$

