- 11.1 The proof consists of two parts.
 - (1) Assume that the vectors $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_k$ are linearly independent. We will show that the vectors $T(\underline{v}_1), \dots, T(\underline{v}_k)$ are linearly independent.

Suppose that $c_1 T(\underline{v}_1) + \dots + c_k T(\underline{v}_k) = \underline{0}$, for some numbers c_1, \dots, c_k . Because the mapping T is a linear mapping,

$$\underline{0} = c_1 T(\underline{v}_1) + \dots + c_k T(\underline{v}_k) = T(c_1 \underline{v}_1 + \dots + c_k \underline{v}_k)$$

Because the mapping T is one-to-one, only the zero vector (in V) is mapped onto the zero vector (in \mathbb{R}^n). So we may conclude that

$$c_1 \, \underline{v}_1 + \dots + c_k \, \underline{v}_k = \underline{0}.$$

The fact that the vectors $\underline{v}_1, \ldots, \underline{v}_k$ are linearly independent, implies that $c_1 = \ldots = c_k = 0$. In other words: the vectors $T(\underline{v}_1), \ldots, T(\underline{v}_k)$ are linearly independent.

(2) Assume that the vectors $T(\underline{v}_1), \ldots, T(\underline{v}_k)$ are linearly independent. We will show that the vectors $\underline{v}_1, \ldots, \underline{v}_k$ are linearly independent.

Suppose that $c_1 \underline{v}_1 + \cdots + c_k \underline{v}_k = \underline{0}$, for some numbers c_1, \ldots, c_k .

Then $T(c_1 \underline{v}_1 + \dots + c_k \underline{v}_k) = \underline{0}$ and the fact that the mapping T is linear, imply that

$$c_1 T(\underline{v}_1) + \dots + c_k T(\underline{v}_k) = \underline{0}.$$

Since the vectors $T(\underline{v}_1), \ldots, T(\underline{v}_k)$ are linearly independent, it follows that $c_1 = \ldots = c_k = 0$. In other words: the vectors $\underline{v}_1, \ldots, \underline{v}_k$ are linearly independent.

11.2 (a) If $T: \mathbb{P}_2 \to \mathbb{R}^3$ is the coordinate mapping with respect to the usual basis of \mathbb{P}_2 formed by the polynomials $p_1: x \to 1$, $p_2: x \to x$ and $p_3: x \to x^2$, then

$$T(q_1) = T(p_1 + p_3) = \begin{bmatrix} 1\\0\\1 \end{bmatrix},$$
$$T(q_2) = T(p_2 + p_3) = \begin{bmatrix} 0\\1\\1 \end{bmatrix},$$
$$T(q_3) = T(p_1 + 2p_2 + p_3) = \begin{bmatrix} 1\\2\\1 \end{bmatrix}.$$

and

(b) Note that the vectors $T(q_1), T(q_2)$ and $T(q_3)$ are linearly independent, because the matrix $A = \begin{bmatrix} T(q_1) & T(q_2) & T(q_3) \end{bmatrix}$ is invertible, as can be proved as follows:

$$\det \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} = \det \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} + \det \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} = -1 - 1 = -2 \neq 0.$$

Then, according to Exercise 11.1, the polynomials q_1, q_2 and q_3 are linearly independent.

(c) Because the matrix A is invertible, $\operatorname{Col}(A) = \mathbb{R}^3$. Hence, the vectors $T(q_1), T(q_2)$ and $T(q_3)$, which correspond to the columns of the matrix A, span the space \mathbb{R}^3 .

So if $p \in \mathbb{P}_2$, say $p: x \to a + bx + cx^2$, then T(p) can be written as a linear combination of the vectors $T(q_1), T(q_2)$ and $T(q_3)$: say $T(p) = c_1 T(q_1) + c_2 T(q_2) + c_3 T(q_3)$. This implies, by the linearity of the mapping T, that

$$T(p) = T(c_1 q_1 + c_2 q_2 + c_3 q_3).$$

The fact that the mapping T is one-to-one implies that

$$p = c_1 \, q_1 + c_2 \, q_2 + c_3 \, q_3.$$

This proves that the polynomials q_1, q_2 and q_3 span the space \mathbb{IP}_2 .

(d) Let q be the polynomial in \mathbb{P}_2 defined by $q(x) = 1 + 4x + 7x^2$.

In order to write the vector T(q) as a linear combination of the vectors $T(q_1), T(q_2)$ and $T(q_3)$, we reduce the matrix

$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 4 \\ 1 & 1 & 1 & 7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 4 \\ 0 & 1 & 0 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 4 \\ 0 & 0 & -2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 4 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 6 \\ 0 & 0 & 1 & -1 \end{bmatrix}.$$

So $T(q) = 2T(q_1) + 6T(q_2) - T(q_3) = T(2q_1 + 6q_2 - q_3)$. Since the mapping T is one-to-one, this implies that $q = 2q_1 + 6q_2 - q_3$. So the coordinate vector of q with respect to the basis of \mathbb{P}_2 formed by the polynomials q_1, q_2 and q_3 is

$$\begin{bmatrix} 2\\ 6\\ -1 \end{bmatrix}.$$

11.3 The proof consists of three parts.

(1) Let \underline{u} and \underline{u}' be vectors in U. Then, the fact that the mappings S and T are linear implies that

$$(T \circ S)(\underline{u} + \underline{u}') = T(S(\underline{u} + \underline{u}')) = T(S(\underline{u}) + S(\underline{u}')) = T(S(\underline{u})) + T(S(\underline{u}'))$$
$$= (T \circ S)(\underline{u}) + (T \circ S)(\underline{u}').$$

Similarly, for all vectors \underline{u} in U and all scalars c,

$$(T \circ S)(c \underline{u}) = c (T \circ S)(\underline{u}).$$

Hence, the mapping $T \circ S$ is linear.

(2) Assume that (T ∘ S)(<u>u</u>) = (T ∘ S)(<u>u</u>'). Then T(S(<u>u</u>)) = T(S(<u>u</u>')). As the mapping T is one-to-one, this implies that S(<u>u</u>) = S(<u>u</u>'). As the mapping S is one-to-one, this implies that <u>u</u> = <u>u</u>'. Hence, the mapping T ∘ S is one-to-one. (3) Assume that \underline{w} is a vector in W. We will show that this vector is the image under the mapping $T \circ S$ of at least one vector in the vector space U.

As the mapping T is surjective, there exists at least one vector, say \underline{v} , in the vector space V such that $T(\underline{v}) = \underline{w}$. As the mapping S is surjective, there exists at least one vector, say \underline{u} , in the vector space U such that $S(\underline{u}) = \underline{v}$. Then, however,

$$(T \circ S)(\underline{u}) = T(S(\underline{u})) = T(\underline{v}) = \underline{w}.$$

In other words: the mapping $T \circ S$ is surjective.

According to (1), (2) and (3), the mapping $T \circ S$ is an isomorphism.

11.11 Because dim $\operatorname{Col}(A) \leq n$ and dim $\operatorname{Row}(A) \leq m$, the rank of a matrix is at most equal to min $\{m, n\}$. If $n \leq m$, then rank $A \leq n$ and dim $\operatorname{Null}(A) \geq n - n = 0$. If $m \leq n$, then rank $A \leq m$ and dim $\operatorname{Null}(A) \geq n - m$.

11.13 (a) By using the definition Q we find that

$$Q^{2} = (I - P)^{2} = (I - P)(I - P) = I - P - PI + P^{2} = I - 2P + P = I - P = Q$$

and

$$QP = (I - P)P = P - P^2 = P - P = O.$$

(b) If $y \in \operatorname{Col}(P)$, then there exists an <u>x</u> such that $y = P\underline{x}$. This however means that

$$Q\underline{y} = (I - P)\underline{y} = \underline{y} - P\underline{y} = P\underline{x} - P^2\underline{x} = P\underline{x} - P\underline{x} = \underline{0}.$$

So $\underline{y} \in \text{Null}(Q)$. If $\underline{y} \in \text{Null}(Q)$, then

$$Q\underline{y} = \underline{0} \Longrightarrow (I - P)\underline{y} = \underline{0} \Longrightarrow \underline{y} - P\underline{y} = \underline{0} \Longrightarrow \underline{y} = P\underline{y}$$

Hence $\underline{y} \in \operatorname{Col}(P)$.

(c) The Dimension Theorem and part (b) imply that

$$n = \operatorname{rank}(Q) + \dim \operatorname{Null}(Q) = \operatorname{rank}(Q) + \dim \operatorname{Col}(P) = \operatorname{rank}(Q) + \operatorname{rank}(P).$$