
11.1 The proof consists of two parts.

(1) Assume that the vectors v
1
, v

2
, . . . , v

k
are linearly independent. We will show that the vectors

T (v
1
), . . . , T (v

k
) are linearly independent.

Suppose that c1 T (v1) + · · ·+ ck T (vk) = 0, for some numbers c1, . . . , ck.

Because the mapping T is a linear mapping,

0 = c1 T (v1) + · · ·+ ck T (vk) = T (c1 v1 + · · ·+ ck vk).

Because the mapping T is one-to-one, only the zero vector (in V ) is mapped onto the zero vector

(in IRn). So we may conclude that

c1 v1 + · · ·+ ck vk = 0.

The fact that the vectors v
1
, . . . , v

k
are linearly independent, implies that c1 = . . . = ck = 0. In

other words: the vectors T (v
1
), . . . , T (v

k
) are linearly independent.

(2) Assume that the vectors T (v
1
), . . . , T (vk) are linearly independent. We will show that the vectors

v
1
, . . . , v

k
are linearly independent.

Suppose that c1 v1 + · · ·+ ck vk = 0, for some numbers c1, . . . , ck.

Then T (c1 v1 + · · ·+ ck vk) = 0 and the fact that the mapping T is linear, imply that

c1 T (v1) + · · ·+ ck T (vk) = 0.

Since the vectors T (v
1
), . . . , T (v

k
) are linearly independent, it follows that c1 = . . . = ck = 0. In

other words: the vectors v
1
, . . . , v

k
are linearly independent.

11.2 (a) If T : IP2 → IR3 is the coordinate mapping with respect to the usual basis of IP2 formed by the

polynomials p1:x → 1, p2:x → x and p3:x → x2, then

T (q1) = T (p1 + p3) =







1

0

1






,

T (q2) = T (p2 + p3) =







0

1

1







T (q3) = T (p1 + 2p2 + p3) =







1

2

1






.and

(b) Note that the vectors T (q1), T (q2) and T (q3) are linearly independent, because the matrix

A = [T (q1) T (q2) T (q3) ] is invertible, as can be proved as follows:

det







1 0 1

0 1 2

1 1 1






= det

[

1 2

1 1

]

+ det

[

0 1

1 1

]

= −1− 1 = −2 6= 0.

Then, according to Exercise 11.1, the polynomials q1, q2 and q3 are linearly independent.



(c) Because the matrix A is invertible, Col(A) = IR3. Hence, the vectors T (q1), T (q2) and T (q3), which

correspond to the columns of the matrix A, span the space IR3.

So if p ∈ IP2, say p:x → a+ bx+ cx2, then T (p) can be written as a linear combination of the vectors

T (q1), T (q2) and T (q3): say T (p) = c1 T (q1) + c2 T (q2) + c3 T (q3). This implies, by the linearity of

the mapping T , that

T (p) = T
(

c1 q1 + c2 q2 + c3 q3
)

.

The fact that the mapping T is one-to-one implies that

p = c1 q1 + c2 q2 + c3 q3.

This proves that the polynomials q1, q2 and q3 span the space IP2.

(d) Let q be the polynomial in IP2 defined by q(x) = 1 + 4x+ 7x2.

In order to write the vector T (q) as a linear combination of the vectors T (q1), T (q2) and T (q3), we

reduce the matrix






1 0 1 1

0 1 2 4

1 1 1 7






→







1 0 1 1

0 1 2 4

0 1 0 6






→







1 0 1 1

0 1 2 4

0 0 −2 2






→







1 0 1 1

0 1 2 4

0 0 1 −1







→







1 0 0 2

0 1 0 6

0 0 1 −1






.

So T (q) = 2T (q1) + 6T (q2) − T (q3) = T (2q1 + 6q2 − q3). Since the mapping T is one-to-one, this

implies that q = 2q1 + 6q2 − q3. So the coordinate vector of q with respect to the basis of IP2 formed

by the polynomials q1, q2 and q3 is






2

6

−1






.

11.3 The proof consists of three parts.

(1) Let u and u′ be vectors in U . Then, the fact that the mappings S and T are linear implies that

(T ◦ S)(u + u′) = T
(

S(u+ u′)
)

= T
(

S(u) + S(u′)
)

= T
(

S(u)
)

+ T
(

S(u′)
)

= (T ◦ S)(u) + (T ◦ S)(u′).

Similarly, for all vectors u in U and all scalars c,

(T ◦ S)(c u) = c (T ◦ S)(u).

Hence, the mapping T ◦ S is linear.

(2) Assume that (T ◦ S)(u) = (T ◦ S)(u′).

Then T
(

S(u)
)

= T
(

S(u′)
)

. As the mapping T is one-to-one, this implies that S(u) = S(u′). As

the mapping S is one-to-one, this implies that u = u′.

Hence, the mapping T ◦ S is one-to-one.



(3) Assume that w is a vector in W . We will show that this vector is the image under the mapping

T ◦ S of at least one vector in the vector space U .

As the mapping T is surjective, there exists at least one vector, say v, in the vector space V

such that T (v) = w. As the mapping S is surjective, there exists at least one vector, say u, in

the vector space U such that S(u) = v. Then, however,

(T ◦ S)(u) = T
(

S(u)
)

= T (v) = w.

In other words: the mapping T ◦ S is surjective.

According to (1), (2) and (3), the mapping T ◦ S is an isomorphism.

11.11 Because dimCol(A) ≤ n and dimRow(A) ≤ m, the rank of a matrix is at most equal to min{m,n}.

If n ≤ m, then rank A ≤ n and dimNull(A) ≥ n− n = 0.

If m ≤ n, then rank A ≤ m and dimNull(A) ≥ n−m.

11.13 (a) By using the definition Q we find that

Q2 = (I − P )2 = (I − P )(I − P ) = I − P − PI + P 2 = I − 2P + P = I − P = Q

and

QP = (I − P )P = P − P 2 = P − P = O.

(b) If y ∈ Col(P ), then there exists an x such that y = Px. This however means that

Qy = (I − P )y = y − Py = Px− P 2x = Px− Px = 0.

So y ∈ Null(Q).

If y ∈ Null(Q), then

Qy = 0 =⇒ (I − P )y = 0 =⇒ y − Py = 0 =⇒ y = Py.

Hence y ∈ Col(P ).

(c) The Dimension Theorem and part (b) imply that

n = rank(Q) + dim Null(Q) = rank(Q) + dim Col(P ) = rank(Q) + rank(P ).


