11.15 (a) According to Theorem 10, the system $A \underline{x}=\underline{b}$ is solvable.

In view of the Dimension Theorem, $\operatorname{dim} \operatorname{Null}(A)=3-\operatorname{rank} A=0$.
The number of free variables in the system $A \underline{x}=\underline{0}$ equals $\operatorname{dim} \operatorname{Null}(A)=0$.
(b) According to Theorem 10, the system $A \underline{x}=\underline{b}$ is solvable.

In view of the Dimension Theorem, $\operatorname{dim} \operatorname{Null}(A)=9-\operatorname{rank} A=7$.
The number of free variables in the system $A \underline{x}=\underline{0}$ equals $\operatorname{dim} \operatorname{Null}(A)=7$.
(c) According to Theorem 10 , the system $A \underline{x}=\underline{b}$ is solvable.

In view of the $\operatorname{Dimension~Theorem,~} \operatorname{dim} \operatorname{Null}(A)=3-\operatorname{rank} A=2$.
The number of free variables in the system $A \underline{x}=\underline{0}$ equals $\operatorname{dim} \operatorname{Null}(A)=2$.
11.17 (a) We are considering a linear mapping $T: V \rightarrow W$, where $V=\mathbb{R}^{5}$. So $\operatorname{dim} V=5$. According to the Dimension Theorem for linear mappings, $\operatorname{dim} \operatorname{Ker}(T)=5-\operatorname{dim} \operatorname{Im}(T)=5-3=2$.
(b) We are considering a linear mapping $T: V \rightarrow W$, where $V=\mathbb{P}_{4}$. So $\operatorname{dim} V=5$. According to the Dimension Theorem for linear mappings, $\operatorname{dim} \operatorname{Ker}(T)=5-\operatorname{dim} \operatorname{Im}(T)=5-1=4$.
11.19 (a) If $\operatorname{dim} \operatorname{Ker}(T)=0$, then $\operatorname{Ker}(T)=\{\underline{0}\}$. According to Theorem 5.3, in this case, the linear mapping T is one-to-one.
(b) Note that

$$
\operatorname{dim} \operatorname{Im}(T)=n-1<n=\operatorname{dim} V
$$

which implies that $\operatorname{Im}(T) \neq V$. Then Exercise 18 implies that the mapping T is not one-to-one.
(c) Note that $\operatorname{Im}(T) \subseteq \mathbb{R}^{n}$, which implies that $\operatorname{dim} \operatorname{Im}(T) \leq n$.

In combination with Theorem 12 this leads to

$$
\operatorname{dim} \operatorname{Ker}(T)=\operatorname{dim} \mathbb{R}^{m}-\operatorname{dim} \operatorname{Im}(T)=m-\operatorname{dim} \operatorname{Im}(T) \geq m-n>0
$$

$\operatorname{So} \operatorname{Ker}(T) \neq\{\underline{0}\}$. In view of Exercise 9.16, this means that the mapping T is not one-to-one.
(d) According to Exercise 18, the linear mapping is one-to-one.
11.20 Let $T: V \rightarrow W$ be a linear mapping. According to the Dimension Theorem for linear mappings,

$$
\operatorname{dim} \operatorname{Ker}(T)=\operatorname{dim} V-\operatorname{dim} \operatorname{Im}(T) \geq \operatorname{dim} V-\operatorname{dim} W>0
$$

Note that $\operatorname{dim} \operatorname{Im}(T) \leq \operatorname{dim} W$, because $\operatorname{Im}(T) \subset W$. So there exists at least one vector $\underline{v} \neq \underline{0}$ in $\operatorname{Ker}(T)$. This however means that $T(\underline{v})=\underline{0}=T(\underline{0})$. By consequence, the mapping T is not one-to-one.
12.1 Let $\underline{v}_{3}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ with $a, b, c \in \mathbb{R}$. Then

$$
\begin{aligned}
& \underline{v}_{1} \cdot \underline{v}_{3}=0 \Longleftrightarrow \frac{a}{\sqrt{6}}+\frac{b}{\sqrt{6}}-\frac{2 c}{\sqrt{6}}=0 \Longleftrightarrow a+b-2 c=0, \\
& \underline{v}_{2} \cdot \underline{v}_{3}=0 \Longleftrightarrow \frac{a}{\sqrt{2}}-\frac{b}{\sqrt{2}}=0 \Longleftrightarrow a-b=0 \\
& \left\|\underline{v}_{3}\right\|=1 \Longleftrightarrow a^{2}+b^{2}+c^{2}=1 .
\end{aligned}
$$

and

The first two equations lead to $a=b=c$. In combination with the third equation this leads to $3 a^{2}=1$. So $a=\frac{1}{\sqrt{3}}$. Hence, $\underline{v}_{3}=\frac{1}{\sqrt{3}}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
12.2 Note that
and

$$
\begin{aligned}
& \underline{v}_{1} \cdot \underline{v}_{2}=\underline{v}_{1} \cdot \underline{v}_{3}=\underline{v}_{2} \cdot \underline{v}_{3}=0 \\
& \underline{v}_{1} \cdot \underline{v}_{1}=\underline{v}_{2} \cdot \underline{v}_{2}=\underline{v}_{3} \cdot \underline{v}_{3}=1 .
\end{aligned}
$$

So the vectors $\underline{v}_{1}, \underline{v}_{2}, \underline{v}_{3}$ are orthonormal.
Then, in view of Theorem 1, these vectors are also linearly independent.
So, in view of Theorem 11.5 , these three vectors (in the space \mathbb{R}^{3} of dimension 3) form a basis of \mathbb{R}^{3}.
The coordinates of the vector \underline{u} with respect to this basis are
and

$$
\begin{aligned}
& c_{1}=\underline{u} \cdot \underline{v}_{1}=1, \\
& c_{2}=\underline{u} \cdot \underline{v}_{2}=0 \\
& c_{3}=\underline{u}, \underline{v}_{3}=\sqrt{2},
\end{aligned}
$$

respectively. Hence, $\underline{u}=\underline{v}_{1}+\sqrt{2} \underline{v}_{3}$.
12.6 Assume that $\underline{u} \in W^{\perp}$, that is: $\underline{u} \perp \underline{w}$ for all $\underline{w} \in W$. So, in particular, $\underline{u} \perp \underline{w}_{i}$ for all $1 \leq i \leq k$.

Now assume that $\underline{u} \perp \underline{w}_{i}$ for all $1 \leq i \leq k$.
Let $\underline{w} \in W$. Because the vectors $\underline{w}_{1}, \ldots, \underline{w}_{k}$ span the space $W, \underline{w}=c_{1} \underline{w}_{1}+\cdots+c_{k} \underline{w}_{k}$, for some numbers c_{1}, \ldots, c_{k}. Hence,

$$
\underline{u} \cdot \underline{w}=\underline{u} \cdot\left(c_{1} \underline{w}_{1}+\cdots+c_{k} \underline{w}_{k}\right)=c_{1}\left(\underline{u} \cdot \underline{w}_{1}\right)+\cdots+c_{k}\left(\underline{u} \cdot \underline{w}_{k}\right)=0 .
$$

This means that $\underline{u} \perp \underline{w}$. Because $\underline{w} \in W$ was arbitrarily chosen, $\underline{u} \perp \underline{w}$ for all $\underline{w} \in W$. So $\underline{u} \in W^{\perp}$.
12.7 We will prove that $\{\underline{0}\} \subset W \cap W^{\perp}$ and that $W \cap W^{\perp} \subset\{\underline{0}\}$.

Since W and W^{\perp} are linear subspaces, $\underline{0} \in W$ and $\underline{0} \in W^{\perp}$. Hence, $\{\underline{0}\} \subset W \cap W^{\perp}$.
Assume that $\underline{u} \in W \cap W^{\perp}$. Then $\underline{u} \perp \underline{w}$ for all $\underline{w} \in W$. So $\underline{u} \perp \underline{u}$ and

$$
\|\underline{u}\|=\sqrt{\underline{u} \cdot \underline{u}}=0 .
$$

Hence, $\underline{u}=\underline{0}$. By consequence, $W \cap W^{\perp} \subset\{\underline{0}\}$.
12.8 Note that

$$
\begin{aligned}
W^{\perp} & =\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \in \mathbb{R}^{3} \left\lvert\,\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \cdot\left[\begin{array}{r}
2 \\
-5 \\
4
\end{array}\right]=0\right.\right\}=\left\{\left.\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, 2 x-5 y+4 z=0\right\} \\
& =\left\{\left.\left[\begin{array}{c}
\frac{5}{2} y-2 z \\
y \\
z
\end{array}\right] \right\rvert\, y, z \in \mathbb{R}\right\}=\left\{\left.y\left[\begin{array}{l}
\frac{5}{2} \\
1 \\
0
\end{array}\right]+z\left[\begin{array}{r}
-2 \\
0 \\
1
\end{array}\right] \right\rvert\, y, z \in \mathbb{R}\right\}=\operatorname{span}\left\{\left[\begin{array}{c}
\frac{5}{2} \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
-2 \\
0 \\
1
\end{array}\right]\right\} .
\end{aligned}
$$

12.9 In fact we are looking for a basis of the orthogonal complement of the linear space $W=\operatorname{Col}(A)$, where

$$
A=\left[\begin{array}{rr}
2 & 4 \\
0 & 0 \\
-1 & -2
\end{array}\right]
$$

According to Theorem $4, W^{\perp}=\operatorname{Null}\left(A^{T}\right)$. Partial reduction of the matrix A^{T} leads to

$$
\left[\begin{array}{rrr}
2 & 0 & -1 \\
4 & 0 & -2
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
2 & 0 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

So every vector in $\operatorname{Null}\left(A^{T}\right)$ can be written as

$$
\left[\begin{array}{c}
\frac{1}{2} z \\
y \\
z
\end{array}\right]=z\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
1
\end{array}\right]+y\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

where $y, z \in \mathbb{R}$. Hence, the vectors $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}\frac{1}{2} \\ 0 \\ 1\end{array}\right]$ span the space $\operatorname{Null}\left(A^{T}\right)=W^{\perp}$. Because these vectors are linearly independent too (please check), they form a basis of the space in question.

