
11.14 We will show that the three statements are equivalent by proving that (a) ⇒ (b), (b) ⇒ (c) and

(c) ⇒ (a).

(a) ⇒ (b)

Assume that the system Ax = b is solvable for every vector b ∈ IRm. Then each vector b ∈ IRm is

a linear combination of the columns of the matrix A. Hence, the columns of the matrix A span the

space IRm.

(b) ⇒ (c)

Assume that the columns of the matrix A span the space IRm. Because Col(A) = span{a1, . . . , an} =

IRm,

rank A = dimCol(A) = dim IRm = m.

(c) ⇒ (a)

Assume that rank A = m. In order to show that the system Ax = b is solvable for every b ∈ IRm, we

choose a vector b ∈ IRm.

Because dimCol(A) = rank A = m, Col(A) is a linear subspace of the space IRm of dimension m.

Hence, in view of Exercise 6, Col(A) = IRm. In other words: IRm = span{a1, . . . , an}.

Then, however, b can be written as a linear combination of the columns of the matrix A. So the

system Ax = b is solvable.

11.18 Assume that the mapping T is one-to-one.

In view of Exercise 9.16, the mapping T is one-to-one if and only if Ker(T ) = {0}. According to the

Dimension Theorem for Linear Mappings, this is the case if and only if dim Im(T ) = dimV .

In other words: the mapping T is one-to-one if and only if dim Im(T ) = dimV .

Because Im(T ) is a linear subspace of the space V , dim Im(T ) = dimV if and only if Im(T ) = V .

12.3 We introduce, for m ∈ IN, the statement P(m): if the vectors v1, . . . , vm in IRn are pairwise ortho-

gonal, then

‖v1 + · · ·+ v
m
‖2 = ‖v1 ‖

2 + · · ·+ ‖v
m
‖2.

(1) Obviously, the statement P(1) is true.

(2) Let k ∈ IN and assume that the statement P(k) is true, that is:

‖v1 + · · ·+ v
k
‖2 = ‖v1 ‖

2 + · · ·+ ‖v
k
‖2.

If the vectors v1, . . . , vk+1 are pairwise orthogonal, then the fact that

(
v1 + · · ·+ v

k

)
· v

k+1 = v1 · vk+1 + · · ·+ v
k
· v

k+1 = 0

implies that v1 + · · ·+ vk ⊥ vk+1.

So, according to the Theorem of Pythagoras,

‖(v1 + · · ·+ v
k
) + v

k+1 ‖
2 = ‖v1 + · · ·+ v

k
‖2 + ‖v

k+1 ‖
2

= ‖v1 ‖
2 + · · ·+ ‖v

k
‖2 + ‖v

k+1 ‖
2.

Hence, the statement P(k + 1) is true.

According to the Principle of Induction, the statement P (m) is true for all m ∈ IN.



12.4 Note that the ith coordinate of the vector u with respect to the basis formed by the vectors w1, . . . , wm

is given by u · w
i
. So u =

m∑

i=1

(
u · w

i

)
w

i
. Hence, according to Exercise 3,

‖u‖2 = ‖
m∑

i=1

(
u · w

i

)
w

i
‖2 =

m∑

i=1

‖
(
u · w

i

)
v
i
‖2 =

m∑

i=1

(
u · w

i

)2
‖v

i
‖2 =

m∑

i=1

(
u · w

i

)2
.

Alternative:

‖u‖2 = u · u = u ·

[ m∑

i=1

(
u · w

i

)
w

i

]

=

m∑

i=1

(
u · w

i

)2
.

12.5 The entry at position (i, j) of the matrix ATA is obtained by combining the ith row of AT and the

jth column of A. To be precise: this entry is the dot product of the ith row of AT and the jth column

of A. Because the ith row of AT is precisely the ith column of A, we find at position (i, j) of the

matrix ATA the dot product of the ith column and the jth column of A.

Hence, the columns of A are orthonormal if and only if there is

• a 0 at position (i, j) of ATA if i 6= j and

• a 1 if i = j.

That is: if and only if ATA = I.

12.10 (a) Since Ker(T ) = Null(A), we reduce the matrix A






1 0 2

0 −1 1

2 1 3




 →






1 0 2

0 1 −1

0 1 −1




 →






1 0 2

0 1 −1

0 0 0




 .

So x ∈ Null(A) if and only if x is a solution of the system

{
x1 + 2x3 = 0

x2 − x3 = 0
, which is equivalent to

x =






−2x3

x3

x3




 = x3






−2

1

1






︸ ︷︷ ︸

=w

⇐⇒ x ∈ span{w}.

(b) Since Ker(T ) = span{w},

Ker(T )⊥ = {x | x ⊥ span{w}} = {x | x ⊥ w} = {x | 〈x,w〉 = 0} = {x | − 2x1 + x2 + x3 = 0}.

So any x ∈ Ker(T )⊥ has the form

x =






1

2
x2 +

1

2
x3

x2

x3




 = x2






1

2

1

0






︸ ︷︷ ︸

=u

+x3






1

2

0

1






︸ ︷︷ ︸

=v

.

This proves that the vectors u and v span Ker(T )⊥. Since these vectors are also linearly independent,

they form a basis of Ker(T )⊥.



(c) Note that Im(T ) = Col(A). According to part (a), the first two columns a1 and a2 of the matrix A

form a basis of Col(A).

Obviously, a1 = 2 v and a2 = v − u. Because the linear subspace Ker(T )⊥ is closed with respect to

addition and scalar multiplication, this implies that a1, a2 ∈ Ker(T )⊥. Then, for the same reason,

Col(A) ⊂ Ker(T )⊥.

In a similar way, one proves the reverse inclusion. Hence, Col(A) = Ker(T )⊥.


