12.11 First we will prove that $W \subset\left(W^{\perp}\right)^{\perp}$.

Let $\underline{w} \in W$. Then $\underline{w} \perp \underline{v}$ for all $\underline{v} \in W^{\perp}$. So $\underline{w} \in\left(W^{\perp}\right)^{\perp}$. Since \underline{w} was arbitrarily chosen, this means that $W \subset\left(W^{\perp}\right)^{\perp}$.
Next we will show that $\left(W^{\perp}\right)^{\perp} \subset W$.
Let $\underline{u} \in\left(W^{\perp}\right)^{\perp}$. Then, according to the Projection Theorem,

$$
\underline{u}=\underline{u}^{\prime}+\underline{u}^{\prime \prime},
$$

where $\underline{u}^{\prime} \in W$ and $u^{\prime \prime} \in W^{\perp}$. By consequence

$$
0=\underline{u} \cdot \underline{u}^{\prime \prime}=\underline{u}^{\prime} \cdot \underline{u}^{\prime \prime}+\underline{u}^{\prime \prime} \cdot \underline{u}^{\prime \prime}=\underline{u}^{\prime \prime} \cdot \underline{u}^{\prime \prime} .
$$

Hence $\underline{u}^{\prime \prime}=0$, which implies that

$$
\underline{u}=\underline{u}+\underline{u}^{\prime \prime}=\underline{u}^{\prime} \in W \text {. }
$$

Since \underline{u} was arbitrarily chosen, this means that $\left(W^{\perp}\right)^{\perp} \subset W$.
12.12 The orthogonal projection of the vector

$$
\underline{u}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

on W is

$$
\operatorname{proj}_{W}(\underline{u})=\frac{\underline{u} \cdot \underline{w}_{1}}{\left\|\underline{w}_{1}\right\|^{2}} \underline{w}_{1}+\frac{\underline{u} \cdot \underline{w}_{2}}{\left\|\underline{w}_{2}\right\|^{2}} \underline{w}_{2}=\frac{9}{30} \underline{w}_{1}+\frac{3}{6} \underline{w}_{2}=\frac{3}{10}\left[\begin{array}{r}
2 \\
5 \\
-1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{r}
-2 \\
1 \\
1
\end{array}\right]=\frac{1}{5}\left[\begin{array}{r}
-2 \\
10 \\
1
\end{array}\right] .
$$

The component of \underline{u} which is orthogonal to W is given by

$$
\underline{u}-\operatorname{proj}_{W}(\underline{u})=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]-\frac{1}{5}\left[\begin{array}{r}
-2 \\
10 \\
1
\end{array}\right]=\frac{1}{5}\left[\begin{array}{r}
7 \\
0 \\
14
\end{array}\right] .
$$

12.14 Observe that the vectors \underline{w}_{1} and \underline{w}_{2} are orthogonal. Since

$$
\begin{aligned}
& \operatorname{proj}_{W}\left(\underline{e}_{1}\right)=\frac{e_{1} \cdot \underline{w}_{1}}{\left\|\underline{w}_{1}\right\|^{2}} \underline{w}_{1}+\frac{e_{1} \cdot \underline{w}_{2}}{\left\|\underline{w}_{2}\right\|^{2}} \underline{w}_{2}=\frac{2}{30} \underline{w}_{1}+\frac{-2}{6} \underline{w}_{2}=\frac{1}{15} \underline{w}_{1}-\frac{5}{15} \underline{w}_{2}=\frac{1}{15}\left[\begin{array}{r}
12 \\
0 \\
-6
\end{array}\right], \\
& \operatorname{proj}_{W}\left(e_{2}\right)=\frac{e_{2} \cdot \underline{w}_{1}}{\left\|\underline{w}_{1}\right\|^{2}} \underline{w}_{1}+\frac{e_{2} \cdot \underline{w}_{2}}{\left\|\underline{w}_{2}\right\|^{2}} \underline{w}_{2}=\frac{5}{30} \underline{w}_{1}+\frac{1}{6} \underline{w}_{2}=\frac{1}{6} \underline{w}_{1}+\frac{1}{6} \underline{w}_{2}=\frac{1}{6}\left[\begin{array}{l}
0 \\
6 \\
0
\end{array}\right]
\end{aligned}
$$

and $\quad \operatorname{proj}_{W}\left(\underline{e}_{3}\right)=\frac{\underline{e}_{3} \cdot \underline{w}_{1}}{\left\|\underline{w}_{1}\right\|^{2}} \underline{w}_{1}+\frac{\underline{e}_{3} \cdot \underline{w}_{2}}{\left\|\underline{w}_{2}\right\|^{2}} \underline{w}_{2}=\frac{-1}{30} \underline{w}_{1}+\frac{1}{6} \underline{w}_{2}=-\frac{1}{30} \underline{w}_{1}+\frac{5}{30} \underline{w}_{2}=\frac{1}{30}\left[\begin{array}{r}-12 \\ 0 \\ 6\end{array}\right]$,
the standard matrix of the orthogonal projection proj_{W} is given by

$$
A=\frac{1}{30}\left[\begin{array}{ccc}
24 & 0 & -12 \\
0 & 30 & 0 \\
-12 & 0 & 6
\end{array}\right]
$$

12.15 (a) If $A=\left[\begin{array}{llll}\underline{w}_{1} & \underline{w}_{2} & \cdots & \underline{w}_{m}\end{array}\right]$, then

$$
A^{T} \underline{u}=\left[\begin{array}{c}
\underline{w}_{1}^{T} \\
\vdots \\
\underline{w}_{m}^{T}
\end{array}\right] \underline{u}=\left[\begin{array}{c}
\underline{w}_{1}^{T} \underline{u} \\
\vdots \\
\underline{w}_{m}^{T} \underline{u}
\end{array}\right]=\left[\begin{array}{c}
\underline{w}_{1} \cdot \underline{u} \\
\vdots \\
\underline{w}_{m} \cdot \underline{u}
\end{array}\right] .
$$

So

$$
A A^{T} \underline{u}=\left(\underline{w}_{1} \cdot \underline{u}\right) \underline{w}_{1}+\cdots+\left(\underline{w}_{m} \cdot \underline{u}\right) \underline{w}_{m}=\operatorname{proj}_{W}(\underline{u}) .
$$

(b) Note that

$$
\left(A A^{T}\right)^{T}=\left(A^{T}\right)^{T} A^{T}=A A^{T}
$$

(c) Note that the entry at the position (i, j) of the matrix $A^{T} A$ is

$$
\underline{w}_{i} \cdot \underline{w}_{j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j .\end{cases}
$$

Hence $A^{T} A=I$, so that

$$
\left(A A^{T}\right)^{2}=A A^{T} \cdot A A^{T}=A \cdot A^{T} A \cdot A^{T}=A \cdot I \cdot A^{T}=A A^{T} .
$$

