
12.11 First we will prove that W ⊂
(

W⊥
)⊥

.

Let w ∈W . Then w ⊥ v for all v ∈ W⊥. So w ∈
(

W⊥
)⊥

. Since w was arbitrarily chosen, this means

that W ⊂
(

W⊥
)⊥

.

Next we will show that
(

W⊥
)⊥
⊂W .

Let u ∈
(

W⊥
)⊥

. Then, according to the Projection Theorem,

u = u′ + u′′,

where u′ ∈W and u′′ ∈W⊥. By consequence

0 = u · u′′ = u′ · u′′ + u′′ · u′′ = u′′ · u′′.

Hence u′′ = 0, which implies that

u = u + u′′ = u′ ∈W.

Since u was arbitrarily chosen, this means that
(

W⊥
)⊥
⊂W .

12.12 The orthogonal projection of the vector

u =
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on W is

projW (u) =
u · w
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The component of u which is orthogonal to W is given by

u− projW (u) =
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12.14 Observe that the vectors w
1

and w
2

are orthogonal. Since

projW (e
1
) =

e
1
· w
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,

projW (e
2
) =
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· w
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projW (e
3
) =

e
3
· w
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,and

the standard matrix of the orthogonal projection projW is given by

A = 1

30







24 0 −12

0 30 0
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.



12.15 (a) If A = [ w
1

w
2
· · · wm ], then

AT u =







wT
1

...

wT
m






u =
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1
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mu
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w
1
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So

AAT u =
(

w
1
· u
)

w
1

+ · · ·+
(

wm · u
)

wm = projW (u).

(b) Note that
(

AAT
)T

= (AT )T AT = AAT .

(c) Note that the entry at the position (i, j) of the matrix AT A is

wi · wj =

{

1 if i = j

0 if i 6= j.

Hence AT A = I, so that

(

AAT
)2

= AAT ·AAT = A ·AT A ·AT = A · I ·AT = AAT .


