1.1 (a) According to the definitions,

$$
\underline{u}+(-1) \underline{v}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]+(-1)\left[\begin{array}{r}
2 \\
-1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{r}
-2 \\
1
\end{array}\right]=\left[\begin{array}{r}
-1 \\
2
\end{array}\right]
$$

and

$$
5(2 \underline{u}+\underline{w})=10 \underline{u}+5 \underline{w}=10\left[\begin{array}{l}
1 \\
1
\end{array}\right]+5\left[\begin{array}{r}
-4 \\
2
\end{array}\right]=\left[\begin{array}{l}
10 \\
10
\end{array}\right]+\left[\begin{array}{r}
-20 \\
10
\end{array}\right]=\left[\begin{array}{r}
-10 \\
20
\end{array}\right] .
$$

The lengths of these vectors are
and

$$
\|\underline{u}+(-1) \underline{v}\|=\sqrt{(-1)^{2}+2^{2}}=\sqrt{5}
$$

$$
\|5(2 \underline{u}+\underline{w})\|=\sqrt{(-10)^{2}+20^{2}}=10 \sqrt{5} .
$$

(b) As

$$
c \underline{u}+d \underline{v}=\left[\begin{array}{r}
5 \\
-1
\end{array}\right] \Longleftrightarrow\left[\begin{array}{c}
c+2 d \\
c-d
\end{array}\right]=\left[\begin{array}{r}
5 \\
-1
\end{array}\right],
$$

it holds that $c+2 d=5$ and $c-d=-1$. By subtracting these equations, we obtain $3 d=6$. So $d=2$ and $c=1$.
(c) As

$$
c \underline{v}+d \underline{w}=\underline{u} \Longleftrightarrow c\left[\begin{array}{r}
2 \\
-1
\end{array}\right]+d\left[\begin{array}{r}
-4 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Longleftrightarrow\left[\begin{array}{c}
2 c-4 d \\
-c+2 d
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right],
$$

it holds that $2 c-4 d=1$ and $-c+2 d=1$. Since the first equation implies that $c-2 d=\frac{1}{2}$, whereas the second one implies that $c-2 d=-1$, there exist no numbers c and d satisfying the relation given in the exercise.
(d) Note that

$$
\|c \underline{u}\|=1 \Longleftrightarrow \sqrt{c^{2}+c^{2}}=1 \Longleftrightarrow 2 c^{2}=1 \Longleftrightarrow c= \pm \frac{1}{2} \sqrt{2} .
$$

1.2 Consider the triangle in the following figure

By using the definition of sinus and cosines, we find that

$$
\sin \vartheta=\frac{v_{2}}{\|\underline{v}\|} \quad \text { and } \quad \cos \vartheta=\frac{v_{1}}{\|\underline{v}\|}
$$

Hence, $v_{1}=\|\underline{v}\| \cos \vartheta$, whereas $v_{2}=\|\underline{v}\| \sin \vartheta$.
1.3 According to the properties of the length,

$$
\left\|\frac{1}{\|\underline{v}\|} \underline{v}\right\|=\left|\frac{1}{\|\underline{v}\|}\right|\|\underline{v}\|=\frac{1}{\|\underline{v}\|}\|\underline{v}\|=1 .
$$

1.4 As

$$
\underline{u} \cdot \underline{v}=\|\underline{u}\|\|\underline{v}\| \cos \vartheta \Longleftrightarrow 1=\|\underline{u}\|\|\underline{v}\| \cos \vartheta
$$

$\cos \vartheta>0$. Hence, the vectors \underline{u} and \underline{v} make an acute angle.
As

$$
\underline{v} \cdot \underline{w}=\|\underline{v}\|\|\underline{w}\| \cos \vartheta \Longleftrightarrow 0=\|\underline{v}\|\|\underline{w}\| \cos \vartheta
$$

$\cos \vartheta=0$. Hence, the vectors \underline{v} and \underline{w} are orthogonal.
As

$$
\underline{u} \cdot \underline{w}=\|\underline{u}\|\|\underline{w}\| \cos \vartheta \Longleftrightarrow-3=\|\underline{u}\|\|\underline{w}\| \cos \vartheta,
$$

$\cos \vartheta<0$. Hence, the vectors \underline{u} and \underline{w} make an obtuse angle.
1.5 (a) The two vectors \underline{u} and \underline{v} are parallel if $t=2 \times \frac{5}{3}=\frac{10}{3}$.
(b) The vectors \underline{u} and \underline{v} are orthogonal if

$$
\underline{u} \cdot \underline{v}=0 \Longleftrightarrow 6+5 t=0 \Longleftrightarrow t=-\frac{6}{5} .
$$

(c) If the angle between the two vectors \underline{u} and \underline{v} is $\pi / 4$, then

$$
\begin{aligned}
\underline{u} \cdot \underline{v}=\|\underline{u}\|\|\underline{v}\| \cos \pi / 4 & \Longleftrightarrow 6+5 t=\sqrt{4+t^{2}} \cdot \sqrt{9+25} \cdot \frac{1}{2} \sqrt{2} \Longleftrightarrow(6+5 t)^{2}=\left(4+t^{2}\right) \cdot 34 \cdot \frac{1}{2} \\
& \Longleftrightarrow 36+60 t+25 t^{2}=68+17 t^{2} \Longleftrightarrow 2 t^{2}+15 t-8=0 \\
& \Longleftrightarrow t=\frac{-15 \pm \sqrt{225+64}}{4}=\frac{-15 \pm 17}{4}
\end{aligned}
$$

So $t=\frac{1}{2}$ or $t=-8$.
1.7 (a) As

$$
\underline{u}-\underline{v}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-2
\end{array}\right]
$$

is a directional vector of the line and \underline{u} is a support vector, a vector representation of the line is

$$
\underline{x}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]+t\left[\begin{array}{l}
-1 \\
-2
\end{array}\right]
$$

(b) As $\underline{p}-\underline{q}$ is a directional vector of the line and \underline{p} is a support vector,

$$
\underline{x}=\underline{p}+t(\underline{p}-\underline{q})
$$

is a vector representation of the line through the (points corresponding to the) vectors \underline{p} and \underline{q}.
1.8 A point on the given line is of the form $(2+t, t)$, for some number t. For example the points $(2,0)$ and $(3,1)$ are on the line (here we choose two points because a straight line is uniquely determined by choosing two different points on this line). If these points are on the line with algebraic equation $a x+b y+c=0$, then $2 a+c=0$ and $3 a+b+c=0$. So $a=-\frac{1}{2} c$ and $b=-3 a-c=\frac{1}{2} c$. So an algebraic equation of the line is (choose $c=-2$)

$$
x-y-2=0 .
$$

1.9 As $x-y-2=0 \Longleftrightarrow x-y=2$, a normal equation of the line introduced in the foregoing exercise is $\underline{v} \cdot \underline{n}=2$, where $\underline{n}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$.
1.11 A vector representation of a line in \mathbb{R}^{3} is

$$
\underline{v}=\underline{s}+t \underline{r}
$$

where \underline{s} is a three-dimensional vector on the line and \underline{r} is a three-dimensional vector determining the direction of the line.
1.13 (a) As the plane \mathcal{Q} passes through the origin, $a x+b y+c z=0$ is an algebraic equation of this plane. As the points $(1,2,0)$ and $(-1,0,2)$ are on this plane, $a+2 b=0$ and $-a+2 c=0$. So $b=-\frac{1}{2} a$ and $c=\frac{1}{2} a$. By choosing $a=2$ we obtain the equation

$$
2 x-y+z=0
$$

(b) According to part (a), a normal equation of the plane \mathcal{Q} is $\underline{v} \cdot \underline{n}=0$, where $\underline{n}=\left[\begin{array}{r}2 \\ -1 \\ 1\end{array}\right]$. Let \mathcal{Q} be the (unique) plane through the origin and the points $(1,2,0)$ and $(-1,0,2)$.
(c) As

$$
\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]-\left[\begin{array}{r}
-1 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{r}
2 \\
2 \\
-2
\end{array}\right]
$$

is a directional vector of the line and $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ is a support vector,

$$
\underline{v}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]+t\left[\begin{array}{r}
2 \\
2 \\
-2
\end{array}\right]
$$

is a vector representation of the line through the points $(1,2,0)$ and $(-1,0,2)$.
1.15 (a) Formally, the plane is the set

$$
\begin{aligned}
\mathcal{P} & =\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+2 y+3 z=4\right\}=\left\{(4-2 y-3 z, y, z) \in \mathbb{R}^{3} \mid y, z \in \mathbb{R}\right\} \\
& =\left\{\left.\left[\begin{array}{c}
4-2 y-3 z \\
y \\
z
\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, y, z \in \mathbb{R}\right\} \\
& =\left\{\left.\left[\begin{array}{l}
4 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
-2 y \\
y \\
0
\end{array}\right]+\left[\begin{array}{c}
-3 z \\
0 \\
z
\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, y, z \in \mathbb{R}\right\} \\
& =\{\left.\underbrace{\left[\begin{array}{l}
4 \\
0 \\
0
\end{array}\right]}_{=\underline{s}}+\underbrace{\left[\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right]}_{=\underline{r}_{1}}+\underbrace{\left[\begin{array}{r}
-3 \\
0 \\
1
\end{array}\right]}_{=\underline{r}_{2}} \in \mathbb{R}^{3} \right\rvert\, y, z \in \mathbb{R}\} .
\end{aligned}
$$

The vector representation is

$$
\underline{v}=\underline{s}+t_{1} \underline{r}_{1}+t_{2} \underline{r}_{2} .
$$

(b) A normal representation of the plane is

$$
\underline{v} \cdot \underline{n}=4,
$$

where $\underline{n}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.

