
1.6 (a) The line ` passes through the origin because the equation ax+ by = 0 is satisfied when we substitute

0 for x and y.

(b) Let v be a vector on the line `. Then

av1 + bv2 = 0 ⇐⇒

[
a

b

]

·

[
v1

v2

]

= 0 ⇐⇒ v · n = 0 ⇐⇒ v ⊥ n.

1.10 (a) If the line is vertical, then an equation is x = 0.

Otherwise, an equation is y = mx with m ∈ IR.

Alternative: ax + by = 0, where a 6= 0 or b 6= 0.

(b) A vector representation of this line is v = t r with r a nonzero vector.

(c) A normal representation is v · n = 0, where n is a nonzero vector.

1.12 Let

v = t1 r1 + t2 r2,

be a vector representation of the plane P.

(a) Assume that w is orthogonal to all vectors in this plane. As r1 and r2 are vectors contained in the

plane, w is orthogonal to these directional vectors.

(b) If the vector w is orthogonal to the directional vector r1 and r2 and v is an arbitrary vector in the

plane, then

v = t1 r1 + t2 r2,

for some numbers t1 and t2, so that

v · w =
(
t1 r1 + t2 r2

)
· w = t1

(
r1 · w

)
+ t2

(
r2 · w

)
= 0.

In other words: w is orthogonal to v.

1.14 (a) A normal equation of the plane P is v · n = c, for some number c.

As the plane contains the point (−1, 2, 2),

−1 · 1 + 2 · 1 + 2 · −1 = c ⇐⇒ c = −1.

So v · n = −1 is a normal equation of the plane.

(b) If we write v =






x

y

z




 for a vector in the plane P, then according to part (a),

v · n = −1 ⇐⇒ x + y − z = −1.

So x + y − z = −1 is an algebraic equation of the plane P.



(c) According to part (b), a vector v =
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
 is in the plane P if and only if z = x + y + 1. So a vector

is in the plane P if and only if it is of the form
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,

for some numbers x and y. So r1 and r2 are directional vectors of the plane P and n · r1 = n · r2 = 0,

that is: n is orthogonal to these directional vectors.

1.16 (a) In order to find a normal representation of the two planes we determine for each plane a normal

vector.

If n1 =





x

y

z



 is a normal vector of the plane P1, then n1 is orthogonal to the two directional vectors

of this plane:
{

y − z = 0

x − z = 0
=⇒ x = y = z =⇒ n1 =






1

1

1
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 .

As n1 · s1 = 2, a (normal and algebraic) representation of the first plane is

v · n1 = 2 ⇐⇒ x+ y + z = 2.

If n2 =





x

y

z



 is a normal vector of the plane P2, then n2 is orthogonal to the two directional vectors

of this plane:
{

y + z = 0

−x+ z = 0
=⇒ x = z and y = −z =⇒ n2 =
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As n2 · s2 = 1, a (normal and algebraic) representation of the second plane is

v · n2 = 1 ⇐⇒ x − y + z = 1.

A point


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

 is on the intersection of the two planes if

{
x + y + z = 2

x − y + z = 1.

If we subtract the two equations we get y = 1

2
. Then according to the first equation, x = 2− y − z =
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So each point on the intersection can be written as
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for some z ∈ IR.

Hence, the intersection of the two planes is a line with vector representation v = s + t r.



(b) The two planes can be represented by the equations n1x + n2y + n3z = a and n1x + n2y + n3z = b,

where n1, n2 and n3 are the coordinates of the vector n and where a and b are numbers.

If a = b, then the two planes coincide (because they have the same algebraic representation).

If a 6= b, then the system
{

n1x + n2y + n3z = a

n1x + n2y + n3z = b

has no solution. That is: the two planes have nothing in common.


