1.6 (a) The line ℓ passes through the origin because the equation $a x+b y=0$ is satisfied when we substitute 0 for x and y.
(b) Let \underline{v} be a vector on the line ℓ. Then

$$
a v_{1}+b v_{2}=0 \Longleftrightarrow\left[\begin{array}{l}
a \\
b
\end{array}\right] \cdot\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=0 \Longleftrightarrow \underline{v} \cdot \underline{n}=0 \Longleftrightarrow \underline{v} \perp \underline{n}
$$

1.10 (a) If the line is vertical, then an equation is $x=0$.

Otherwise, an equation is $y=m x$ with $m \in \mathbb{R}$.
Alternative: $a x+b y=0$, where $a \neq 0$ or $b \neq 0$.
(b) A vector representation of this line is $\underline{v}=t \underline{r}$ with \underline{r} a nonzero vector.
(c) A normal representation is $\underline{v} \cdot \underline{n}=0$, where \underline{n} is a nonzero vector.
1.12 Let

$$
\underline{v}=t_{1} \underline{r}_{1}+t_{2} \underline{r}_{2}
$$

be a vector representation of the plane \mathcal{P}.
(a) Assume that \underline{w} is orthogonal to all vectors in this plane. As \underline{r}_{1} and \underline{r}_{2} are vectors contained in the plane, \underline{w} is orthogonal to these directional vectors.
(b) If the vector \underline{w} is orthogonal to the directional vector \underline{r}_{1} and \underline{r}_{2} and \underline{v} is an arbitrary vector in the plane, then

$$
\underline{v}=t_{1} \underline{r}_{1}+t_{2} \underline{r}_{2},
$$

for some numbers t_{1} and t_{2}, so that

$$
\underline{v} \cdot \underline{w}=\left(t_{1} \underline{r}_{1}+t_{2} \underline{r}_{2}\right) \cdot \underline{w}=t_{1}\left(\underline{r}_{1} \cdot \underline{w}\right)+t_{2}\left(\underline{r}_{2} \cdot \underline{w}\right)=0 .
$$

In other words: \underline{w} is orthogonal to \underline{v}.
1.14 (a) A normal equation of the plane \mathcal{P} is $\underline{v} \cdot \underline{n}=c$, for some number c.

As the plane contains the point $(-1,2,2)$,

$$
-1 \cdot 1+2 \cdot 1+2 \cdot-1=c \Longleftrightarrow c=-1 .
$$

So $\underline{v} \cdot \underline{n}=-1$ is a normal equation of the plane.
(b) If we write $\underline{v}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ for a vector in the plane \mathcal{P}, then according to part (a),

$$
\underline{v} \cdot \underline{n}=-1 \Longleftrightarrow x+y-z=-1
$$

So $x+y-z=-1$ is an algebraic equation of the plane \mathcal{P}.
(c) According to part (b), a vector $\underline{v}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ is in the plane \mathcal{P} if and only if $z=x+y+1$. So a vector is in the plane \mathcal{P} if and only if it is of the form

$$
\left[\begin{array}{c}
x \\
y \\
x+y+1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
x \\
0 \\
x
\end{array}\right]+\left[\begin{array}{l}
0 \\
y \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+x \underbrace{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]}_{=\underline{r}_{1}}+\underbrace{\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]}_{=\underline{r}_{2}},
$$

for some numbers x and y. So \underline{r}_{1} and \underline{r}_{2} are directional vectors of the plane \mathcal{P} and $\underline{n} \cdot \underline{r}_{1}=\underline{n} \cdot \underline{r}_{2}=0$, that is: \underline{n} is orthogonal to these directional vectors.
1.16 (a) In order to find a normal representation of the two planes we determine for each plane a normal vector.
If $\underline{n}_{1}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ is a normal vector of the plane \mathcal{P}_{1}, then \underline{n}_{1} is orthogonal to the two directional vectors of this plane:

$$
\left\{\begin{array}{l}
y-z=0 \\
x-z=0
\end{array} \Longrightarrow x=y=z \Longrightarrow \underline{n}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right.
$$

As $\underline{n}_{1} \cdot \underline{s}_{1}=2$, a (normal and algebraic) representation of the first plane is

$$
\underline{v} \cdot \underline{n}_{1}=2 \Longleftrightarrow x+y+z=2 .
$$

If $\underline{n}_{2}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ is a normal vector of the plane \mathcal{P}_{2}, then \underline{n}_{2} is orthogonal to the two directional vectors of this plane:

$$
\left\{\begin{array}{r}
y+z=0 \\
-x+z=0
\end{array} \Longrightarrow x=z \quad \text { and } \quad y=-z \Longrightarrow \underline{n}_{2}=\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right] .\right.
$$

As $\underline{n}_{2} \cdot \underline{s}_{2}=1$, a (normal and algebraic) representation of the second plane is

$$
\underline{v} \cdot \underline{n}_{2}=1 \Longleftrightarrow x-y+z=1 .
$$

A point $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ is on the intersection of the two planes if

$$
\left\{\begin{array}{l}
x+y+z=2 \\
x-y+z=1 .
\end{array}\right.
$$

If we subtract the two equations we get $y=\frac{1}{2}$. Then according to the first equation, $x=2-y-z=$ $1 \frac{1}{2}-z$
So each point on the intersection can be written as

$$
\left[\begin{array}{c}
1 \frac{1}{2}-z \\
\frac{1}{2} \\
z
\end{array}\right]=\underbrace{\left[\begin{array}{c}
1 \frac{1}{2} \\
\frac{1}{2} \\
0
\end{array}\right]}_{=\underline{s}}+z \underbrace{\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]}_{=\underline{r}},
$$

for some $z \in \mathbb{R}$.
Hence, the intersection of the two planes is a line with vector representation $\underline{v}=\underline{s}+t \underline{r}$.
(b) The two planes can be represented by the equations $n_{1} x+n_{2} y+n_{3} z=a$ and $n_{1} x+n_{2} y+n_{3} z=b$, where n_{1}, n_{2} and n_{3} are the coordinates of the vector \underline{n} and where a and b are numbers.
If $a=b$, then the two planes coincide (because they have the same algebraic representation).
If $a \neq b$, then the system

$$
\left\{\begin{array}{l}
n_{1} x+n_{2} y+n_{3} z=a \\
n_{1} x+n_{2} y+n_{3} z=b
\end{array}\right.
$$

has no solution. That is: the two planes have nothing in common.

