- 1.6 (a) The line ℓ passes through the origin because the equation ax + by = 0 is satisfied when we substitute 0 for x and y.
 - (b) Let \underline{v} be a vector on the line ℓ . Then

$$av_1 + bv_2 = 0 \iff \begin{bmatrix} a \\ b \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 0 \iff \underline{v} \cdot \underline{n} = 0 \iff \underline{v} \perp \underline{n}.$$

1.10 (a) If the line is vertical, then an equation is x = 0.

Otherwise, an equation is y = mx with $m \in \mathbb{R}$.

Alternative: ax + by = 0, where $a \neq 0$ or $b \neq 0$.

- (b) A vector representation of this line is $\underline{v} = t \underline{r}$ with \underline{r} a nonzero vector.
- (c) A normal representation is $\underline{v} \cdot \underline{n} = 0$, where \underline{n} is a nonzero vector.

1.12 Let

$$\underline{v} = t_1 \, \underline{r}_1 + t_2 \, \underline{r}_2,$$

be a vector representation of the plane \mathcal{P} .

- (a) Assume that \underline{w} is orthogonal to all vectors in this plane. As \underline{r}_1 and \underline{r}_2 are vectors contained in the plane, \underline{w} is orthogonal to these directional vectors.
- (b) If the vector \underline{w} is orthogonal to the directional vector \underline{r}_1 and \underline{r}_2 and \underline{v} is an arbitrary vector in the plane, then

$$\underline{v} = t_1 \, \underline{r}_1 + t_2 \, \underline{r}_2,$$

for some numbers t_1 and t_2 , so that

$$\underline{v} \cdot \underline{w} = (t_1 \underline{r}_1 + t_2 \underline{r}_2) \cdot \underline{w} = t_1 (\underline{r}_1 \cdot \underline{w}) + t_2 (\underline{r}_2 \cdot \underline{w}) = 0.$$

In other words: \underline{w} is orthogonal to \underline{v} .

1.14 (a) A normal equation of the plane \mathcal{P} is $\underline{v} \cdot \underline{n} = c$, for some number c. As the plane contains the point (-1, 2, 2),

$$-1 \cdot 1 + 2 \cdot 1 + 2 \cdot -1 = c \iff c = -1.$$

So $\underline{v} \cdot \underline{n} = -1$ is a normal equation of the plane. (b) If we write $\underline{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ for a vector in the plane \mathcal{P} , then according to part (a),

$$\underline{v} \cdot \underline{n} = -1 \Longleftrightarrow x + y - z = -1.$$

So x + y - z = -1 is an algebraic equation of the plane \mathcal{P} .

(c) According to part (b), a vector $\underline{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ is in the plane \mathcal{P} if and only if z = x + y + 1. So a vector is in the plane \mathcal{P} if and only if it is of the form

$$\begin{bmatrix} x\\ y\\ x+y+1 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix} + \begin{bmatrix} x\\ 0\\ x \end{bmatrix} + \begin{bmatrix} 0\\ y\\ y \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix} + x \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix} + y \begin{bmatrix} 0\\ 1\\ 1 \end{bmatrix},$$
$$\underbrace{=\underline{r_1}}_{\underline{r_1}} + y \underbrace{\begin{bmatrix} 0\\ 1\\ 1 \end{bmatrix}}_{\underline{r_2}},$$

for some numbers x and y. So \underline{r}_1 and \underline{r}_2 are directional vectors of the plane \mathcal{P} and $\underline{n} \cdot \underline{r}_1 = \underline{n} \cdot \underline{r}_2 = 0$, that is: \underline{n} is orthogonal to these directional vectors.

1.16 (a) In order to find a normal representation of the two planes we determine for each plane a normal vector.

If $\underline{n}_1 = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ is a normal vector of the plane \mathcal{P}_1 , then \underline{n}_1 is orthogonal to the two directional vectors of this plane:

$$\begin{cases} y-z=0\\ x-z=0 \end{cases} \Longrightarrow x=y=z \Longrightarrow \underline{n}_1 = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}.$$

As $\underline{n}_1 \cdot \underline{s}_1 = 2$, a (normal and algebraic) representation of the first plane is

$$\underline{v} \cdot \underline{n}_1 = 2 \iff x + y + z = 2.$$

If $\underline{n}_2 = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ is a normal vector of the plane \mathcal{P}_2 , then \underline{n}_2 is orthogonal to the two directional vectors of this plane:

$$\begin{cases} y+z=0\\ -x+z=0 \end{cases} \Longrightarrow x=z \quad \text{and} \quad y=-z \Longrightarrow \underline{n}_2 = \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}.$$

As $\underline{n}_2 \cdot \underline{s}_2 = 1$, a (normal and algebraic) representation of the second plane is

$$\underline{v} \cdot \underline{n}_2 = 1 \Longleftrightarrow x - y + z = 1.$$

A point $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ is on the intersection of the two planes if

$$\begin{cases} x+y+z=2\\ x-y+z=1. \end{cases}$$

If we subtract the two equations we get $y = \frac{1}{2}$. Then according to the first equation, $x = 2 - y - z = 1\frac{1}{2} - z$

So each point on the intersection can be written as

$$\begin{bmatrix} 1\frac{1}{2} - z \\ \frac{1}{2} \\ z \end{bmatrix} = \underbrace{\begin{bmatrix} 1\frac{1}{2} \\ \frac{1}{2} \\ 0 \end{bmatrix}}_{=\underline{s}} + z \underbrace{\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}}_{=\underline{r}},$$

for some $z \in \mathbb{R}$.

Hence, the intersection of the two planes is a line with vector representation $\underline{v} = \underline{s} + t \underline{r}$.

(b) The two planes can be represented by the equations n₁x + n₂y + n₃z = a and n₁x + n₂y + n₃z = b, where n₁, n₂ and n₃ are the coordinates of the vector n and where a and b are numbers. If a = b, then the two planes coincide (because they have the same algebraic representation). If a ≠ b, then the system

$$\begin{cases} n_1 x + n_2 y + n_3 z = a \\ n_1 x + n_2 y + n_3 z = b \end{cases}$$

has no solution. That is: the two planes have nothing in common.