2.1 The equations in $(a),(c)$ and (f) are linear.
2.2 Substitution of the given numbers for the variables in the third equation of the system leads to $5=-7$. So the third equation is not satisfied. Hence the given sequence of numbers is not a solution of the system.
2.3 The first equation leads to $x=y+3$. If we replace in the second equation x by $y+3$, then we find that

$$
2(y+3)-2 y=k \Longleftrightarrow k=6
$$

So the system has no solutions if $k \neq 6$.
There is no k such that the system has a unique solution.
The system has an infinite number of solutions if $k=6$. Each solution is of the form

$$
\left\{\begin{array}{l}
x=3+t \\
y=t
\end{array}\right.
$$

where $t \in \mathbb{R}$.
2.4 An example of a system is

$$
\left\{\begin{aligned}
7 x+2 y+z-3 u & =5 \\
x+2 y+4 z & =1
\end{aligned}\right.
$$

2.5 The standard form of the system is

$$
\left\{\begin{aligned}
2 x_{1}+2 x_{3} & =1 \\
3 x_{1}+x_{2}+4 x_{3} & =-7 \\
6 x_{1}+x_{2}-x_{3} & =0
\end{aligned}\right.
$$

Hence the augmented coefficient matrix is

$$
\left[\begin{array}{rrrr}
2 & 0 & 2 & 1 \\
3 & 1 & 4 & -7 \\
6 & 1 & -1 & 0
\end{array}\right]
$$

2.6 (a) The matrix has the reduced row-echelon form.
(b) Because property (3) is not satisfied, the matrix has no (reduced) row-echelon form.
(c) The matrix has the reduced row-echelon form.
(d) The matrix has the row-echelon form.
(e) Because property (4) is not satisfied, the matrix has no (reduced) row-echelon form.
(f) The matrix has the reduced row-echelon form.
2.7 (a) The leading variables are x_{1}, x_{2} and x_{3}. The variable x_{4} is a free variable and the reduced form of the system is

$$
\left\{\begin{array}{l}
x_{1}=7 x_{4}+8 \\
x_{2}=-3 x_{4}+2 \\
x_{3}=-x_{4}-5 .
\end{array}\right.
$$

Each solution of the system can be written as

$$
x_{1}=7 t+8 \quad x_{2}=-3 t+2 \quad x_{3}=-t-5 \quad x_{4}=t,
$$

where t is a real number.
(b) The leading variables are x_{1} and x_{3}. The variable x_{2} is a free variable. In view of the third row of the matrix which corresponds to the equation $0=1$, the system has no solutions. It doesn't make sense to write down the reduced form of the system.
2.8 (a) Reduction of the augmented coefficient matrix leads to

$$
\begin{aligned}
{\left[\begin{array}{rrr}
2 & -3 & -2 \\
2 & 1 & 1 \\
3 & 2 & 1
\end{array}\right] } & \rightarrow\left[\begin{array}{ccr}
1^{*} & -\frac{3}{2} & -1 \\
2 & 1 & 1 \\
3 & 2 & 1
\end{array}\right]
\end{aligned} \rightarrow\left[\begin{array}{ccc}
1^{*} & -\frac{3}{2} & -1 \\
0 & 4 & 3 \\
0 & \frac{13}{2} & 4
\end{array}\right] .
$$

In view of the last row of the reduced matrix the system is inconsistent.
(c) Reduction of the augmented coefficient matrix leads to

$$
\begin{aligned}
{\left[\begin{array}{rrrr}
5 & -2 & 6 & 0 \\
-2 & 1 & -3 & 1
\end{array}\right] } & \rightarrow\left[\begin{array}{rrrr}
-2 & 1 & -3 & 1 \\
5 & -2 & 6 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1^{*} & -\frac{1}{2} & \frac{3}{2} & -\frac{1}{2} \\
5 & -2 & 6 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1^{*} & -\frac{1}{2} & \frac{3}{2} \\
0 & \frac{1}{2} & -\frac{3}{2} \\
\hline \frac{5}{2}
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccc}
1^{*} & -\frac{1}{2} & \frac{3}{2} & \frac{1}{2} \\
0 & 1^{*} & -3 & 5
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1^{*} & 0 & 0 & 3 \\
0 & 1^{*} & -3 & 5
\end{array}\right] .
\end{aligned}
$$

The basic variables are x_{1} and x_{2}. The free variable is x_{3}. The reduced form of the system is

$$
\left\{\begin{array}{l}
x_{1}=3 \\
x_{2}=5+3 s
\end{array}\right.
$$

where $s \in \mathbb{R}$.
Each solution of the system can be written as

$$
x_{1}=3 \quad x_{2}=5+3 s \quad x_{3}=s
$$

where s is a real number.
(d) Reduction of the augmented coefficient matrix leads to

$$
\begin{aligned}
& {\left[\begin{array}{rrrrrr}
0 & 0 & 1 & 2 & -1 & 4 \\
0 & 0 & 0 & 1 & -1 & 3 \\
0 & 0 & 1 & 3 & -2 & 7 \\
2 & 4 & 1 & 7 & 0 & 7
\end{array}\right] \quad r_{1} \leftrightarrow r_{4}\left[\begin{array}{rrrrrr}
2 & 4 & 1 & 7 & 0 & 7 \\
0 & 0 & 0 & 1 & -1 & 3 \\
0 & 0 & 1 & 3 & -2 & 7 \\
0 & 0 & 1 & 2 & -1 & 4
\end{array}\right]} \\
& \xrightarrow{r_{1} / 2}\left[\begin{array}{rrrrrr}
1^{*} & 2 & \frac{1}{2} & \frac{7}{2} & 0 & \frac{7}{2} \\
0 & 0 & 0 & 1 & -1 & 3 \\
0 & 0 & 1 & 3 & -2 & 7 \\
0 & 0 & 1 & 2 & -1 & 4
\end{array}\right] \\
& r_{2} \leftrightarrow r_{4}\left[\begin{array}{llllrl}
1^{*} & 2 & \frac{1}{2} & \frac{7}{2} & 0 & \frac{7}{2} \\
0 & 0 & 1^{*} & 2 & -1 & 4 \\
0 & 0 & 1 & 3 & -2 & 7 \\
0 & 0 & 0 & 1 & -1 & 3
\end{array}\right] \\
& \xrightarrow[\longrightarrow]{r_{1}-\frac{1}{2} r_{2}} \underset{r_{3}-r_{2}}{\longrightarrow}\left[\begin{array}{llllrl}
1^{*} & 2 & 0 & \frac{5}{2} & \frac{1}{2} & \frac{3}{2} \\
0 & 0 & 1^{*} & 2 & -1 & 4 \\
0 & 0 & 0 & 1^{*} & -1 & 3 \\
0 & 0 & 0 & 1 & -1 & 3
\end{array}\right] \\
& \xrightarrow{\substack{r_{1}-\frac{5}{2} r_{3} \\
r_{2}-2 r_{3} \\
r_{4}-r_{3}}}\left[\begin{array}{llllrr}
1^{*} & 2 & 0 & 0 & 3 & -6 \\
0 & 0 & 1^{*} & 0 & 1 & -2 \\
0 & 0 & 0 & 1^{*} & -1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Hence the basic variables are u, w and x, while v and y are the free variables.
The reduced form of the system is

$$
\left\{\begin{array}{l}
u=-2 s-3 t-6 \\
w=-t-2 \\
x=t+3
\end{array}\right.
$$

where $s, t \in \mathbb{R}$.
Each solution of the system can be written as

$$
u=-2 s-3 t-6 \quad v=s \quad w=-t-2 \quad x=t+3 \quad y=t
$$

where s and t are real numbers.
2.9 (a) Reduction of the coefficient matrix leads to

$$
\begin{aligned}
{\left[\begin{array}{rrr}
2 & -1 & -3 \\
-1 & 2 & -3 \\
1 & 1 & 4
\end{array}\right] } & \xrightarrow{r_{1} \leftrightarrow} r_{3}\left[\begin{array}{rrr}
1^{*} & 1 & 4 \\
-1 & 2 & -3 \\
2 & -1 & -3
\end{array}\right] \stackrel{r_{2}+r_{1}}{r_{3}-2 r_{1}}\left[\begin{array}{rrr}
1^{*} & 1 & 4 \\
0 & 3 & 1 \\
0 & -3 & -11
\end{array}\right] \\
& \xrightarrow{r_{2} / 3}\left[\begin{array}{ccc}
1^{*} & 1 & 4 \\
0 & 1^{*} & \frac{1}{3} \\
0 & -3 & -11
\end{array}\right] \stackrel{r_{1}-r_{2}}{r_{3}+3 r_{2}}\left[\begin{array}{ccc}
1^{*} & 0 & \frac{11}{3} \\
0 & 1^{*} & \frac{1}{3} \\
0 & 0 & -10
\end{array}\right] \xrightarrow{-\frac{1}{10} r_{3}} \begin{array}{c}
r_{1}-\frac{11}{3} r_{3} \\
r_{2}-\frac{1}{3} r_{3}
\end{array}\left[\begin{array}{ccc}
1^{*} & 0 & 0 \\
0 & 1^{*} & 0 \\
0 & 0 & 1^{*}
\end{array}\right] .
\end{aligned}
$$

The unique solution of the system is $x=0, y=0, z=0$.
(b) Reduction of the coefficient matrix leads to

$$
\begin{array}{cc}
{\left[\begin{array}{rrrr}
0 & 1 & 3 & -2 \\
2 & 1 & -4 & 3 \\
2 & 3 & 2 & -1 \\
-4 & -3 & 5 & -4
\end{array}\right]} & \stackrel{r_{1}}{\leftrightarrow} r_{2}\left[\begin{array}{rrrr}
2 & 1 & -4 & 3 \\
0 & 1 & 3 & -2 \\
2 & 3 & 2 & -1 \\
-4 & -3 & 5 & -4
\end{array}\right] \stackrel{r_{3}-r_{1}}{r_{4}-2 r_{1}}\left[\begin{array}{rrrr}
2 & 1 & -4 & 3 \\
0 & 1 & 3 & -2 \\
0 & 2 & 6 & -4 \\
0 & -1 & -3 & 2
\end{array}\right] \\
& \stackrel{r_{3}-2 r_{2}}{r_{4}+r_{2}}\left[\begin{array}{rrrr}
2 & 1 & -4 & 3 \\
0 & 1 & 3 & -2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{r_{1}-r_{2}}\left[\begin{array}{rrrr}
2 & 0 & -7 & 5 \\
0 & 1 & 3 & -2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \xrightarrow{\stackrel{1}{2} r_{1}}\left[\begin{array}{rrrr}
1 & 0 & -\frac{7}{2} & \frac{5}{2} \\
0 & 1 & 3 & -2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
\end{array}
$$

The basic variables are u and v. The free variables are w and x.
The reduced form of the system is

$$
\left\{\begin{array}{l}
u=\frac{7}{2} s-\frac{5}{2} t \\
v=-3 s+2 t
\end{array}\right.
$$

where $s, t \in \mathbb{R}$.
Each solution of the system can be written as

$$
u=\frac{7}{2} s-\frac{5}{2} t \quad v=-3 s+2 t \quad w=s \quad x=t
$$

where s and t are real numbers.
2.10 (a) The three lines do not coincide and they pass through the origin.
(b) The three lines coincide.
2.11 (a) Since $a d-b c \neq 0$, we may conclude that $a \neq 0$ or $c \neq 0$; say $a \neq 0$.

Then reduction of the matrix leads to

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \xrightarrow{\frac{r_{1}}{a}}\left[\begin{array}{ll}
1^{*} & \frac{b}{a} \\
c & d
\end{array}\right] \stackrel{r_{2}-c r_{1}}{\longrightarrow}\left[\begin{array}{cc}
1^{*} & \frac{b}{a} \\
0 & d-\frac{b c}{a}
\end{array}\right]=\left[\begin{array}{cc}
1^{*} & \frac{b}{a} \\
0 & \frac{a d-b c}{a}
\end{array}\right]} \\
& r_{2} / \frac{a d-b c}{\longrightarrow}\left[\begin{array}{ll}
1^{*} & \frac{b}{a} \\
0 & 1^{*}
\end{array}\right] \stackrel{r_{1}-\frac{b}{a} r_{2}}{\longrightarrow}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
\end{aligned}
$$

If $c \neq 0$, then reduction leads to a similar result.
(b) According to part (a) reduction of the matrix

$$
\left[\begin{array}{lll}
a & b & k \\
c & d & l
\end{array}\right]
$$

leads to a matrix of the form

$$
\left[\begin{array}{lll}
1 & 0 & * \\
0 & 1 & *
\end{array}\right] .
$$

This proves that the given system has a unique solution.
2.13 (a) If $x=s_{1}, y=t_{1}$ and $x=s_{2}, y=t_{2}$ are solutions of (1), then

$$
\left\{\begin{array} { l }
{ a s _ { 1 } + b t _ { 1 } = k } \\
{ c s _ { 1 } + d t _ { 1 } = l }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
a s_{2}+b t_{2}=k \\
c s_{2}+d t_{2}=l
\end{array}\right.\right.
$$

Then however

$$
a\left(s_{1}-s_{2}\right)+b\left(t_{1}-t_{2}\right)=a s_{1}-a s_{2}+b t_{1}-b t_{2}=a s_{1}+b t_{1}-\left(a s_{2}+b t_{2}\right)=k-k=0 .
$$

Similarly,

$$
c\left(s_{1}-s_{2}\right)+d\left(t_{1}-t_{2}\right)=\ldots=l-l=0 .
$$

Hence, $\left(x=s_{1}-s_{2}, y=t_{1}-t_{2}\right)$ is a solution of (2).
2.14 A reduced $n \times n$ matrix containing no zero row has the form

$$
\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

2.15 (a) Reduction of the augmented coefficient matrix leads to

$$
\left[\begin{array}{cccc}
1 & 0 & 1 & 2 \\
3 & 1 & 2 & p \\
0 & q & 8 & 8
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & p-6 \\
0 & q & 8 & 8
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & p-6 \\
0 & 0 & 8+q & 8-p q+6 q
\end{array}\right]
$$

It is possible that the system is inconsistent only if $q=-8$. If we substitute this value of q in the foregoing matrix, we get

$$
\left[\begin{array}{ccrc}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & p-6 \\
0 & 0 & 0 & 8 p-40
\end{array}\right] .
$$

Hence the system is inconsistent if $q=-8$ and $p \neq 5$.
(b) If $q \neq-8$ the system has a unique solution for all values of p.

