2.9 (b) Reduction of the augmented coefficient matrix leads to

4 -8 12 1* -2 3 1* -2 3
3 —6 9 —=| 3 -6 91 —= | 0 0 O
-2 4 —6 -2 4 —6 0 0 O

The basic variable is x; and the free variable is z5. The reduced form of the system is

Ty =2t+3
l‘gzt,

where t € IR.

2.14 Reduction of the augmented coefficient matrix leads to

1 2 =3 4 (1 2 -3 4 1 2 -3 4
3 -1 5 2 | = |0 -7 14 -10 | - |0 =7 14 —-10
4 1 a>—14 a+2 |0 =7 a?—2 a-14 0 0 a>—16 a—4

(1 2 -3 4

-0 1 =2 2

0 0 a*—16 a—4

We distinguish three cases:

If @ = 4, then further reduction leads to

2 -3 4 1 o 1 &
-0 1+ =2 ¥l -0 1 -2 1
0 0 0 0 00 0 0

In this case we have an infinite number of solutions.

If @ = —4, then further reduction leads to

1 2 -3 4
0 1 —2
0 0 0 -8

In this case the system is inconsistent: there are no solutions.

If a # 4 and a # —4, then further reduction leads to

10 1 8 100 -5
01 =2 2 =lo 10
0 0 1" o5 001 4
In this case the system has a unique solution.
2.15 (b) Since (s1,t1) is a solution of the system (1),
as;+bt;i =k
{ as1+dty =1
and since (s, tg) is a solution of the system (2)
asg+btyg =0
{ csg+dtg =0.
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2.18

2.19 (a)

So
a(s1 + sg) + b(t1 +to) = asy + asg + bty + btg = asy + bty + asg +btg =k +0=k.

Similarly,
C(Sl+80)+d(t1 +t0) =...=0l+0=1.

Hence (s1 + S0, t1 + o) is a solution of the system (1).

We distinguish two cases.

If ¢ = 0, then the augmented coefficient matrix is

1 0 2 2
0 0 0 1
0 0 0 d

In view of the second row of this matrix, the system is inconsistent for any value of d.

If ¢ # 0, reduction of the augmented coefficient matrix leads to

1 0 2 2 1 0 2 2
0 ¢ ¢ 1 — 10 1 1 ¢!
0 0 ed c+d 0 0 cd c+d

If d = 0, according to the third row of this matrix, the system is inconsistent for any value of ¢ # 0.

If d # 0, further reduction of the matrix leads to

c+d
0 2 9 1 0 O 2_2W
0 1 1 C_1 — 10 1 0 Cfl_c—’_d
01 c+d cd
cd c+d
0 0
cd

Hence, the system has a unique solution if ¢ # 0 and d # 0.
As we observed before, the system is inconsistent if (1) ¢ =0 or (2) d =0 and ¢ # 0.

Note that z is in the intersection of the three planes if and only if

T-ng =2 1 0 4 T 2
z-n,=0< |0 2 4 zo | = |0
z-ng=q 1 p p’q] |3 q

So we should in fact determine those values of p and g such that the foregoing system of linear
equations has an infinite number of solutions.

In order to answer this question, we reduce the augmented coeflicient matrix of the system

1 0 4 2 1 0 4 2
0 2 4 0l—=10 1 2 0
1 p p’q¢ ¢ 0 p plq—4 q-2

If p = 0, the system has a unique solution. If p # 0, we further reduce the matrix to

1 0 4 2
0 1 2 0
0 0 p>¢g—2p—4 q-—2
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The system has an infinite number of solutions if (and only if) p?¢ —2p —4 =0 and ¢ —2 = 0. So
g=2andp?—p—2=0. Hence, p=—1orp=2.

For the values of p and ¢ we found in part (a), the reduced matrix is

1 0 4 2

0 1 2 0

0 0 0 O
Hence,

r=2-4z

{ y=—2z

is the reduced form of the system and each solution is of the form
2—4z 2 —4
-2z | =0 +2z|-2],
z 0 1

In fact we should determine those values of p such that the foregoing system of linear equations
has no solutions.

In order to answer this question, we reduce the augmented coefficient matrix of the system

1 0 4 2 1 0 4 2
0 2 4 ol=1]o 1 2 0
1 p p* 1 0 p p2—4 -1

Obviously, if p = 0, the system has a unique solution.
If p # 0, further reduction leads to
1 0 4 2

0 1 2 0
0 0 p>P—2p—4 -1

The system has no solutions if

2:|:\/;l+16:1i\/5.

pPP—2p—4=0=p=

If v is a point contained in the three planes with v; = 1, then vy and v3 satisfy
]. =+ 41)3 =
21}2 + 4’03 =0
L+ pvs +pvz = 1

According to the first equation, vy = i. In combination with the second equation this leads to

20+ 1 =0= vy = —%. Hence,

L+pro+p’rs=1=1-Ltp+ip’=1=p>-2p=0=p=0 or p=2.



