4.1 According to Theorem 1 part (1),

$$
A\left(c_{1} \underline{u}_{1}+\cdots+c_{k} \underline{u}_{k}\right)=A\left(c_{1} \underline{u}_{1}\right)+\cdots+A\left(c_{k} \underline{u}_{k}\right) .
$$

According to part (2) of this theorem,

$$
A\left(c_{1} \underline{u}_{1}\right)+\cdots+A\left(c_{k} \underline{u}_{k}\right)=c_{1} A \underline{u}_{1}+\cdots+c_{k} A \underline{u}_{k} .
$$

4.2 We have to solve the system of equations

$$
\left\{\begin{aligned}
-1 c_{1}+2 c_{2}+7 c_{3}+6 c_{4} & =0 \\
3 c_{1}+c_{3}+3 c_{4} & =5 \\
2 c_{1}+4 c_{2}+c_{3}+c_{4} & =6 \\
-c_{2}+4 c_{3}+2 c_{4} & =-3
\end{aligned}\right.
$$

Reduction of the augmented coefficient matrix leads to

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
-1 & 2 & 7 & 6 & 0 \\
3 & 0 & 1 & 3 & 5 \\
2 & 4 & 1 & 1 & 6 \\
0 & -1 & 4 & 2 & -3
\end{array}\right] \rightarrow\left[\begin{array}{rrrrr}
1 & -2 & -7 & -6 & 0 \\
0 & 6 & 22 & 21 & 5 \\
0 & 8 & 15 & 13 & 6 \\
0 & -1 & 4 & 2 & -3
\end{array}\right] \rightarrow\left[\begin{array}{rrrrr}
1 & -2 & -7 & -6 & 0 \\
0 & 1 & -4 & -2 & 3 \\
0 & 8 & 15 & 13 & 6 \\
0 & 6 & 22 & 21 & 5
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{rrrrr}
1 & 0 & -15 & -10 & 6 \\
0 & 1 & -4 & -2 & 3 \\
0 & 0 & 47 & 29 & -18 \\
0 & 0 & 46 & 33 & -13
\end{array}\right] \rightarrow\left[\begin{array}{rrrrr}
1 & 0 & -15 & -10 & 6 \\
0 & 1 & -4 & -2 & 3 \\
0 & 0 & 1 & -4 & -5 \\
0 & 0 & 46 & 33 & -13
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrrr}
1 & 0 & 0 & -70 & -69 \\
0 & 1 & 0 & -18 & -17 \\
0 & 0 & 1 & -4 & -5 \\
0 & 0 & 0 & 217 & 217
\end{array}\right] \rightarrow\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right] .
\end{aligned}
$$

So $c_{1}=c_{2}=c_{4}=1$ and $c_{3}=-1$.
4.5 We have to find numbers c_{1} and c_{2} such that $\underline{b}=c_{1} \underline{a}_{1}+c_{2} \underline{a}_{2}$.

Therefore we reduce the following (augmented) coefficient matrix:

$$
\left[\begin{array}{rrc}
1 & -5 & 3 \\
3 & -8 & -5 \\
-1 & 2 & p
\end{array}\right] \rightarrow\left[\begin{array}{rrc}
1 & -5 & 3 \\
0 & 7 & -14 \\
0 & -3 & p+3
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -5 & 3 \\
0 & 1 & -2 \\
0 & -3 & p+3
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -7 \\
0 & 1 & -2 \\
0 & 0 & p-3
\end{array}\right] .
$$

Due to the last row of this matrix such numbers exist only if $p=3$.
4.10 (b) Reduction of the coefficient matrix leads to

$$
\left[\begin{array}{rr}
4 & -8 \\
3 & -6 \\
-2 & 4
\end{array}\right] \longrightarrow\left[\begin{array}{rr}
1 & -2 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

Hence x_{1} is a basic variable, while x_{2} is a free variable. Furthermore the reduced form of the system is given by $x_{1}=2 x_{2}$.

So the solution set is

$$
\left\{\left.t\left[\begin{array}{l}
2 \\
1
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\}
$$

4.11 If $A \underline{u}=\underline{0}, A \underline{v}=\underline{0}$ and $t \in \mathbb{R}$, then according to Theorem 1 ,

$$
A(\underline{u}+\underline{v})=A \underline{u}+A \underline{v}=\underline{0}+\underline{0}=\underline{0}
$$

and

$$
A(t \underline{v})=t A \underline{v}=t \underline{0}=\underline{0} .
$$

Hence $\underline{u}+\underline{v}$ and $t \underline{v}$ are solutions of the system $A \underline{x}=\underline{0}$.
4.13 (a) Reduction of the augmented coefficient matrix leads to

$$
\left[\begin{array}{rrrr}
5 & -2 & 6 & 0 \\
-2 & 1 & 3 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -\frac{1}{2} & -\frac{3}{2} & -\frac{1}{2} \\
5 & -2 & 6 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -\frac{1}{2} & -\frac{3}{2} & -\frac{1}{2} \\
0 & \frac{1}{2} & 13 \frac{1}{2} & 2 \frac{1}{2}
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 0 & 12 & 2 \\
0 & 1 & 27 & 5
\end{array}\right]
$$

So x_{3} is a free variable and the reduced form of the system is

$$
\left\{\begin{array}{l}
x_{1}=2-12 t \\
x_{2}=5-27 t,
\end{array}\right.
$$

where $t \in \mathbb{R}$. So the solution set is

$$
\left\{\left.\left[\begin{array}{l}
2 \\
5 \\
0
\end{array}\right]+t\left[\begin{array}{r}
-12 \\
-27 \\
1
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\} .
$$

4.14 (b) Since we have found the solution sets of the corresponding homogeneous systems in Exercise 10, it is sufficient to find one solution of the inhomogeneous system.

A particular solution that can be easily found is $x_{1}=1$ and $x_{2}=-1$. According to Exercise 10(b) and Theorem 3 the solution set is given by

$$
\left\{\left.\left[\begin{array}{r}
1 \\
-1
\end{array}\right]+t\left[\begin{array}{l}
2 \\
1
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\} .
$$

4.17 (b) We have to check whether the system $A \underline{x}=\underline{b}$ is solvable for every $\underline{b} \in \mathbb{R}^{3}$, where A is the matrix with the given vectors as columns.
(Partial) reduction of the augmented coefficient matrix leads to

$$
\left[\begin{array}{rrrr}
2 & 4 & 8 & b_{1} \\
-1 & 1 & -1 & b_{2} \\
3 & 2 & 8 & b_{3}
\end{array}\right] \rightarrow\left[\begin{array}{rrrc}
1 & 2 & 4 & \frac{1}{2} b_{1} \\
0 & 3 & 3 & b_{2}+\frac{1}{2} b_{1} \\
0 & -4 & -4 & b_{3}-1 \frac{1}{2} b_{1}
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & 4 & \frac{1}{2} b_{1} \\
0 & 1 & 1 & \frac{1}{3} b_{2}+\frac{1}{6} b_{1} \\
0 & 0 & 0 & b_{3}-\frac{5}{6} b_{1}+\frac{4}{3} b_{2}
\end{array}\right] .
$$

So the system is solvable only if $b_{3}-\frac{5}{6} b_{1}+\frac{4}{3} b_{2}=0$, that is: the given vectors do not span \mathbb{R}^{3}.

