5.6 The mapping can be presented in the following way:

(a) By means of the foregoing figure one finds that

$$
T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
-x \\
y
\end{array}\right]
$$

(b) Let $\underline{u}, \underline{v} \in \mathbb{R}^{2}$ and $c \in \mathbb{R}$. Then

$$
T(\underline{u}+\underline{v})=T\left(\left[\begin{array}{l}
u_{1}+v_{1} \\
u_{2}+v_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
-u_{1}-v_{1} \\
u_{2}+v_{2}
\end{array}\right]=\left[\begin{array}{c}
-u_{1} \\
u_{2}
\end{array}\right]+\left[\begin{array}{c}
-v_{1} \\
v_{2}
\end{array}\right]=T(\underline{u})+T(\underline{v}),
$$

and

$$
T(c \underline{u})=T\left(\left[\begin{array}{l}
c u_{1} \\
c u_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
-c u_{1} \\
c u_{2}
\end{array}\right]=c\left[\begin{array}{c}
-u_{1} \\
u_{2}
\end{array}\right]=c T(\underline{u}) .
$$

According to the definition T is a linear mapping.
5.8 We consider the mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by

$$
T(\underline{x})=A \underline{x}+\underline{b},
$$

where A is an $m \times n$ matrix and $\underline{b} \in \mathbb{R}^{m}$.
We will prove that T is linear if and only if $\underline{b}=\underline{0}$.
(a) Assume that T is linear. Then on the one hand

$$
T(0 \cdot \underline{u})=0 \cdot T(\underline{u})=\underline{0}
$$

and on the other hand

$$
T(0 \cdot \underline{u})=A \underline{0}+\underline{b}=\underline{b} .
$$

So $\underline{b}=\underline{0}$.
(b) Assume that $\underline{b}=\underline{0}$. Then T is the left multiplication by a matrix. So T is linear.
5.9 (a) As observed in Chapter 3, a vector $\underline{x} \in \mathbb{R}^{n}$ can be written as a linear combination of the unit vectors:

$$
\underline{x}=x_{1} \underline{e}_{1}+x_{2} \underline{e}_{2}+\cdots+x_{n} \underline{e}_{n}
$$

Since the mapping T is linear, the observation preceding this exercise implies that for all $\underline{x} \in \mathbb{R}^{n}$

$$
\begin{aligned}
T(\underline{x}) & =T\left(x_{1} \underline{e}_{1}+x_{2} \underline{e}_{2}+\cdots+x_{n} \underline{e}_{n}\right)=x_{1} T\left(\underline{e}_{1}\right)+x_{2} T\left(\underline{e}_{2}\right)+\cdots+x_{n} T\left(\underline{e}_{n}\right) \\
& =x_{1} \underline{e}_{1}+x_{2} \underline{e}_{2}+\cdots+x_{n} \underline{e}_{n}=\underline{x} .
\end{aligned}
$$

So T is the identical mapping.
(b) The mapping T is the left-multiplication by the matrix $\left[\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1\end{array}\right]$.
5.12 (a) We give a prove based on the definition (of a linear map).

Let $\underline{u}, \underline{v} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$. Then

$$
\begin{aligned}
\left(T_{1}+T_{2}\right)(\underline{u}+\underline{v}) & \left.=T_{1}(\underline{u}+\underline{v})+T_{2}(\underline{u}+\underline{v}) \quad \text { (according to the definition of } T_{1}+T_{2}\right) \\
& =T_{1}(\underline{u})+T_{1}(\underline{v})+T_{2}(\underline{u})+T_{2}(\underline{v}) \quad \text { (because } T_{1} \text { and } T_{2} \text { are linear) } \\
& =T_{1}(\underline{u})+T_{2}(\underline{u})+T_{1}(\underline{v})+T_{2}(\underline{v}) \\
& =\left(T_{1}+T_{2}\right)(\underline{u})+\left(T_{1}+T_{2}\right)(\underline{v})
\end{aligned}
$$

and

$$
\left(T_{1}+T_{2}\right)(c \underline{u})=T_{1}(c \underline{u})+T_{2}(c \underline{u})=c T_{1}(\underline{u})+c T_{2}(\underline{u})=c\left[T_{1}(\underline{u})+T_{2}(\underline{u})\right]=c\left(T_{1}+T_{2}\right)(\underline{u}) .
$$

Next we will give a proof by using the standard matrix.
Let A_{1} be the standard matrix corresponding to T_{1} and let A_{2} be the standard matrix corresponding to T_{2}. Then $T_{1}(\underline{u})=A_{1} \underline{u}$ and $T_{2}(\underline{u})=A_{2} \underline{u}$ for all $\underline{u} \in \mathbb{R}^{n}$. This however means that for every $\underline{u} \in \mathbb{R}^{n}$

$$
\left(T_{1}+T_{2}\right)(\underline{u})=T_{1}(\underline{u})+T_{2}(\underline{u})=A_{1} \underline{u}+A_{2} \underline{u}=\left(A_{1}+A_{2}\right) \underline{u} .
$$

This proves that the mapping $T_{1}+T_{2}$ is the left multiplication by the matrix $A_{1}+A_{2}$. Hence the mapping $T_{1}+T_{2}$ is linear.
(b) For a vector $\underline{v} \in \operatorname{Ker}\left(T_{1}\right) \cap \operatorname{Ker}\left(T_{2}\right)$ it holds that $T_{1}(\underline{v})=T_{2}(\underline{v})=\underline{0}$. By consequence,

$$
\left(T_{1}+T_{2}\right)(\underline{v})=T_{1}(\underline{v})+T_{2}(\underline{v})=\underline{0}+\underline{0}=\underline{0},
$$

in other words: $\underline{v} \in \operatorname{Ker}\left(T_{1}+T_{2}\right)$.
(c) Consider the mappings $T_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $T_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
T_{1}(\underline{x})=\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right] \underline{x} \quad \text { and } \quad T_{2}(\underline{x})=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] \underline{x} \quad\left(\underline{x} \in \mathbb{R}^{2}\right)
$$

Then $\operatorname{Ker}\left(T_{1}\right)=\operatorname{Ker}\left(T_{2}\right)=\{\underline{0}\}$. However, for every $\underline{x} \in \mathbb{R}^{2}$ it holds that

$$
\left(T_{1}+T_{2}\right) \underline{x}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \underline{x}=\underline{0},
$$

which implies that $\operatorname{Ker}\left(T_{1}+T_{2}\right)=\mathbb{R}^{2}$.
5.13 (a) Let $\underline{u}, \underline{v} \in \mathbb{R}^{2}$. Then

$$
T(\underline{u})=T(\underline{v}) \Longleftrightarrow\left[\begin{array}{c}
u_{1} \\
u_{2} \\
u_{1}+u_{2}
\end{array}\right]=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{1}+v_{2}
\end{array}\right] \Longleftrightarrow\left\{\begin{array}{l}
u_{1}=v_{1} \\
u_{2}=v_{2}
\end{array} \Longleftrightarrow \underline{u}=\underline{v}\right.
$$

Hence, the mapping T is one-to-one.
(b) Since

$$
T(\underline{0})=T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)
$$

the mapping T is not one-to-one.
5.15 (a) Let $x, y \in \mathbb{R}$. Then

$$
T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Hence, the mapping T is the left-multiplication by the matrix

$$
A=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]
$$

So the mapping T is linear.
(b) Note that

$$
\operatorname{Im}(T)=\operatorname{Col}(A)=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right\}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
$$

This set corresponds with the line $y=x$ in the x, y-plane.
Note that $\operatorname{Ker}(T)=\operatorname{Null}(A)$. Since

$$
A \underline{x}=\underline{0} \Longleftrightarrow x_{1}=0 \Longleftrightarrow \underline{x}=c \underline{e}_{2} \text { for some } c \in \mathbb{R}
$$

$\operatorname{Ker}(T)=\operatorname{Null}(A)=\left\{c \underline{e}_{2} \mid c \in \mathbb{R}\right\}=\operatorname{span}\left\{\underline{e}_{2}\right\}$.
This set corresponds with the line $x=0$ in the x, y-plane.

