
5.6 The mapping can be presented in the following way:
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(a) By means of the foregoing figure one finds that
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(b) Let u, v ∈ IR2 and c ∈ IR. Then

T (u+ v) = T

([

u1 + v1

u2 + v2

])

=

[

−u1 − v1

u2 + v2

]

=

[

−u1

u2

]

+

[

−v1

v2

]

= T (u) + T (v),

and

T (c u) = T

([

cu1

cu2

])

=

[

−cu1

cu2

]

= c

[

−u1

u2

]

= cT (u).

According to the definition T is a linear mapping.

5.8 We consider the mapping T : IRn → IRm defined by

T (x) = Ax + b,

where A is an m× n matrix and b ∈ IRm.

We will prove that T is linear if and only if b = 0.

(a) Assume that T is linear. Then on the one hand

T (0 · u) = 0 · T (u) = 0

and on the other hand

T (0 · u) = A0 + b = b.

So b = 0.

(b) Assume that b = 0. Then T is the left multiplication by a matrix. So T is linear.

5.9 (a) As observed in Chapter 3, a vector x ∈ IRn can be written as a linear combination of the unit vectors:

x = x1 e1 + x2 e2 + · · ·+ xn en.

Since the mapping T is linear, the observation preceding this exercise implies that for all x ∈ IRn

T (x) = T (x1 e1 + x2 e2 + · · ·+ xn en) = x1T (e1) + x2T (e2) + · · ·+ xnT (en)

= x1 e1 + x2 e2 + · · ·+ xn en = x.

So T is the identical mapping.



(b) The mapping T is the left-multiplication by the matrix
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5.12 (a) We give a prove based on the definition (of a linear map).

Let u, v ∈ IRn and c ∈ IR. Then

(T1 + T2)(u + v) = T1(u + v) + T2(u + v) (according to the definition of T1+T2)

= T1(u) + T1(v) + T2(u) + T2(v) (because T1 and T2 are linear)

= T1(u) + T2(u) + T1(v) + T2(v)

= (T1 + T2)(u) + (T1 + T2)(v),

and

(T1 + T2)(c u) = T1(c u) + T2(c u) = c T1(u) + c T2(u) = c [T1(u) + T2(u)] = c (T1 + T2)(u).

Next we will give a proof by using the standard matrix.

Let A1 be the standard matrix corresponding to T1 and let A2 be the standard matrix corresponding

to T2. Then T1(u) = A1u and T2(u) = A2u for all u ∈ IRn. This however means that for every

u ∈ IRn

(T1 + T2)(u) = T1(u) + T2(u) = A1u+ A2u = (A1 + A2)u.

This proves that the mapping T1 + T2 is the left multiplication by the matrix A1 + A2. Hence the

mapping T1 + T2 is linear.

(b) For a vector v ∈ Ker(T1) ∩Ker(T2) it holds that T1(v) = T2(v) = 0. By consequence,

(T1 + T2)(v) = T1(v) + T2(v) = 0 + 0 = 0,

in other words: v ∈ Ker(T1 + T2).

(c) Consider the mappings T1: IR
2 → IR2 and T2: IR

2 → IR2 defined by

T1(x) =

[

1 0

0 1

]

x and T2(x) =

[

−1 0

0 −1

]

x (x ∈ IR2).

Then Ker(T1) = Ker(T2) = {0}. However, for every x ∈ IR2 it holds that

(T1 + T2)x =

[

0 0

0 0

]

x = 0,

which implies that Ker(T1 + T2) = IR2.

5.13 (a) Let u, v ∈ IR2. Then

T (u) = T (v)⇐⇒
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⇐⇒

{

u1 = v1

u2 = v2

⇐⇒ u = v.

Hence, the mapping T is one-to-one.



(b) Since

T (0) = T

(

[

1

1

]

)

,

the mapping T is not one-to-one.

5.15 (a) Let x, y ∈ IR. Then

T

([

x

y

])

=

[

1 0

1 0

] [

x

y

]

.

Hence, the mapping T is the left-multiplication by the matrix

A =

[

1 0

1 0

]

.

So the mapping T is linear.

(b) Note that

Im(T ) = Col(A) = span

{[

1

1

]

,

[

0

0

]}

= span

{[

1

1

]}

.

This set corresponds with the line y = x in the x, y-plane.

Note that Ker(T ) = Null(A). Since

Ax = 0⇐⇒ x1 = 0⇐⇒ x = c e2 for some c ∈ IR,

Ker(T ) = Null(A) = {c e2| c ∈ IR} = span{e2}.

This set corresponds with the line x = 0 in the x, y-plane.


