6.1 Obviously,

$$
(A+B)_{i j}=a_{i j}+b_{i j}=b_{i j}+a_{i j}=(B+A)_{i j} .
$$

6.2 (a) The matrix $B A$ is not defined: $4 \times 5 \cdot 4 \times 5$.
(b) The matrix $A C+D$ is a 4×2 matrix: $\quad 4 \times 5 \cdot 5 \times 2+4 \times 2 \rightarrow 4 \times 2$.
(c) The matrix $A E+B$ is not defined: $4 \times 5 \cdot 5 \times 4+4 \times 5 \rightarrow 4 \times 4+4 \times 5$.
(d) The matrix $A B+B$ is not defined: $4 \times 5 \cdot 4 \times 5$.
(e) The matrix $E(A+B)$ is a 5×5 matrix: $\quad 5 \times 4 \cdot 4 \times 5 \rightarrow 5 \times 5$.
(f) The matrix $A C$ is a 4×2 matrix: $\quad 4 \times 5 \cdot 5 \times 2 \rightarrow 4 \times 2$.

The matrix $E(A C)$ is a 5×2 matrix: $\quad 5 \times 4 \cdot 4 \times 2 \rightarrow 5 \times 2$.
6.3 (a) The first row of the 3×3 matrix $A B$ is

$$
\left[\begin{array}{ccc}
67 & 41 & 41 \\
* & * & * \\
* & * & *
\end{array}\right] .
$$

(b) The first column of the 3×3 matrix $B A$ is

$$
\left[\begin{array}{rrr}
6 & * & * \\
6 & * & * \\
63 & * & *
\end{array}\right] .
$$

(c) The entry at the position $(3,1)$ of the 3×3 matrix $A A$ is

$$
0 \cdot 3+4 \cdot 6+9 \cdot 0=24
$$

6.4 The entry at the position (i, j) of the matrix $A(B+C)$ is equal to

$$
\begin{aligned}
\left((A(B+C))_{i j}\right. & =\sum_{k} a_{i k}(B+C)_{k j}=\sum_{k} a_{i k}\left(b_{k j}+c_{k j}\right)=\sum_{k}\left(a_{i k} b_{k j}+a_{i k} c_{k j}\right) \\
& =\sum_{k} a_{i k} b_{k j}+\sum_{k} a_{i k} c_{k j}=(A B)_{i j}+(A C)_{i j}=(A B+A C)_{i j},
\end{aligned}
$$

which is the entry at the position (i, j) of the matrix $A B+A C$.
6.6 (a)

$$
D+E=\left[\begin{array}{rrr}
7 & 6 & 5 \\
-2 & 1 & 3 \\
7 & 3 & 8
\end{array}\right]
$$

(b) The sum of a 2×2 matrix and a 2×3 matrix is not defined.
(c)

$$
5 A=\left[\begin{array}{rr}
15 & 0 \\
-5 & 10 \\
5 & 5
\end{array}\right] .
$$

(d)

$$
-3(D+2 E)=-3\left[\begin{array}{rrr}
13 & 7 & 8 \\
-3 & 2 & 5 \\
11 & 4 & 11
\end{array}\right]=\left[\begin{array}{rrr}
-39 & -21 & -24 \\
9 & -6 & -15 \\
-33 & -12 & -33
\end{array}\right]
$$

(e)

$$
D^{T}-E^{T}=(D-E)^{T}=\left[\begin{array}{rrr}
-5 & 0 & -1 \\
4 & -1 & 1 \\
-1 & -1 & 2
\end{array}\right]
$$

(f)

$$
C^{T}-4 A=\left[\begin{array}{rr}
-11 & 3 \\
8 & -7 \\
-2 & 1
\end{array}\right]
$$

(g) Note that B^{T} is a 2×2 matrix and that $5 C^{T}$ is a 3×2 matrix. Hence the matrix $B^{T}+5 C^{T}$ is not defined.
(h)

$$
\left(2 E^{T}-3 D^{T}\right)^{T}=2 E-3 D==\left[\begin{array}{rrr}
9 & -13 & 0 \\
1 & 2 & 1 \\
-1 & -4 & -9
\end{array}\right] .
$$

6.7 (a) As a product of a 3×2 matrix and a 2×2 matrix, $A B$ is a 3×2 matrix and

$$
A B=\left[\begin{array}{rr}
12 & -3 \\
-4 & 5 \\
4 & 1
\end{array}\right]
$$

(b) The product of a 2×2 matrix and a 3×2 matrix is not defined. So the matrix $B A$ is not defined.
(c) As a product of a 2×3 matrix and a 3×2 matrix, $C C^{T}$ is a 2×2 matrix and

$$
C C^{T}=\left[\begin{array}{ll}
21 & 17 \\
17 & 35
\end{array}\right]
$$

(d) As a product of a 3×3 matrix and a 3×2 matrix, $D A$ is a 3×2 matrix and

$$
(D A)^{T}=\left[\begin{array}{rr}
0 & 12 \\
-2 & 1 \\
12 & 9
\end{array}\right]^{T}=\left[\begin{array}{rrr}
0 & -2 & 12 \\
12 & 1 & 9
\end{array}\right]
$$

6.11 Note that $A A^{T}$ is an $m \times m$ matrix and

$$
\operatorname{tr}\left(A A^{T}\right)=\left(A A^{T}\right)_{11}+\left(A A^{T}\right)_{22}+\cdots+\left(A A^{T}\right)_{m m}
$$

For every i with $1 \leq i \leq m$

$$
\left(A A^{T}\right)_{i i}=\sum_{j=1}^{n}(A)_{i j}\left(A^{T}\right)_{j i}=\sum_{j=1}^{n} a_{i j} a_{i j}=\sum_{j=1}^{n} a_{i j}^{2} .
$$

Hence,

$$
\operatorname{tr}\left(A A^{T}\right)=\sum_{i=1}^{m}\left(A A^{T}\right)_{i i}=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2} .
$$

