6.5 According to Theorem 4 (d),

$$
(A \underline{u}) \cdot(B \underline{v})=(A \underline{u})^{T} B \underline{v}=\underline{u}^{T} A^{T} B \underline{v}=\underline{u} \cdot\left(A^{T} B \underline{v}\right) .
$$

6.8 (a) On the one hand it holds that $(A B)^{2}=A B A B$, while on the other hand $A^{2} B^{2}=A A B B$. Because, in general, $B A \neq A B$, we try to find a counterexample.
If $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$, then

$$
A B=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right] \quad \text { and } \quad(A B)^{2}=\left[\begin{array}{ll}
4 & 0 \\
0 & 0
\end{array}\right]
$$

while

$$
A^{2}=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right], \quad B^{2}=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right] \quad \text { and } \quad A^{2} B^{2}=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]
$$

(b) Note that

$$
(A+B)^{2}=(A+B)(A+B)=A(A+B)+B(A+B)=A^{2}+A B+B A+B^{2}
$$

So $(A+B)^{2}=A^{2}+2 A B+B^{2}$ if and only if $A B+B A=2 A B \Longleftrightarrow B A=A B$.
Hence, by using the same matrices as in the foregoing part one can show that the statement is not true.
6.9 (a) Note that

$$
\begin{aligned}
& a_{11}=a_{12}=a_{21}=a_{22}=a_{23}=a_{32}=a_{33}=a_{34}=a_{43}=-1 \\
& a_{13}=a_{31}=a_{14}=a_{41}=a_{24}=a_{42}=1 .
\end{aligned}
$$

and

So

$$
A=\left[\begin{array}{rrrr}
-1 & -1 & 1 & 1 \\
-1 & -1 & -1 & 1 \\
1 & -1 & -1 & -1 \\
1 & 1 & -1 & -1
\end{array}\right] \quad \text { and } \quad A^{2}=\left[\begin{array}{rrrr}
4 & 2 & -2 & -4 \\
2 & 4 & 0 & -2 \\
-2 & 0 & 4 & 2 \\
-4 & -2 & 2 & 4
\end{array}\right]
$$

(b) Obviously, $\operatorname{tr}(A)=-4$.
6.10 For $n \times n$ matrices C and D it holds that

$$
\operatorname{tr}(C D)=\sum_{i=1}^{n}(C D)_{i i}=\sum_{i=1}^{n}\left(\sum_{j=1}^{n} c_{i j} d_{j i}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} d_{j i}=\sum_{j=1}^{n}\left(\sum_{i=1}^{n} d_{j i} c_{i j}\right)=\sum_{j=1}^{n}(D C)_{j j}=\operatorname{tr}(D C) .
$$

6.12 (a) As

$$
M^{T}=\left[\begin{array}{ll}
A & O \\
O & B
\end{array}\right]^{T}=\left[\begin{array}{cc}
A^{T} & O \\
O & B^{T}
\end{array}\right]
$$

the matrix M is symmetric if and only if $A=A^{T}$ and $B=B^{T}$, that is: if and only if the matrices A and B are symmetric.
(b) We compare the entries at the position (i, j) of both matrices.

Case 1: $i=1,2$ and $j=1,2$.
The entry at the position (i, j) of the matrix

$$
M N=\left[\begin{array}{ll}
A & O \\
O & B
\end{array}\right]\left[\begin{array}{ll}
C & O \\
O & D
\end{array}\right]
$$

equals

$$
m_{i 1} n_{1 j}+\cdots+m_{i 4} n_{4 j}=(A)_{i 1}(C)_{1 j}+(A)_{i 2}(C)_{2 j}+0 \cdot 0+0 \cdot 0=(A C)_{i j} .
$$

This is the entry at the position (i, j) of the matrix

$$
\left[\begin{array}{cc}
A C & O \\
O & B D
\end{array}\right]
$$

Case 2: $i=1,2$ and $j=3,4$.
The entry at the position (i, j) of the matrix

$$
M N=\left[\begin{array}{ll}
A & O \\
O & B
\end{array}\right]\left[\begin{array}{ll}
C & O \\
O & D
\end{array}\right]
$$

equals

$$
m_{i 1} n_{1 j}+\cdots+m_{i 4} n_{4 j}=(A)_{i 1} \cdot 0+(A)_{i 2} \cdot 0+0 \cdot(D)_{1, j-2}+0 \cdot(D)_{2, j-2}=0
$$

This is the entry at the position (i, j) of the matrix

$$
\left[\begin{array}{cc}
A C & O \\
O & B D
\end{array}\right]
$$

The other cases are similar.
6.13 (a) First note that the matrices $A A^{T}$ and $A+A^{T}$ are well-defined.

Further, according to Theorem 4,

$$
\left(A A^{T}\right)^{T} \stackrel{\text { part }}{=}{ }^{(\mathrm{d})}\left(A^{T}\right)^{T} A^{T} \stackrel{\text { part }}{=}{ }^{(\mathrm{a})} A A^{T}
$$

and

$$
\left(A+A^{T}\right)^{T} \stackrel{\operatorname{part}(\mathrm{~b})}{=} A^{T}+\left(A^{T}\right)^{T} \stackrel{\text { part }}{=}{ }^{\mathrm{a})} A^{T}+A=A+A^{T} .
$$

(b) If the matrix A is symmetric, then

$$
\left(A^{2}\right)^{T}=(A A)^{T}=A^{T} A^{T}=A A=A^{2} .
$$

This means that the matrix A^{2} is symmetric.

