7.1 (a) It is easy to check that

$$
\left[\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right]\left[\begin{array}{rr}
5 & -3 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{rr}
5 & -3 \\
-3 & 2
\end{array}\right]\left[\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Hence $A^{-1}=\left[\begin{array}{rr}5 & -3 \\ -3 & 2\end{array}\right]$.
(b) Note that

$$
A^{-2}=A^{-1} A^{-1}=\left[\begin{array}{rr}
5 & -3 \\
-3 & 2
\end{array}\right]\left[\begin{array}{rr}
5 & -3 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{rr}
34 & -21 \\
-21 & 13
\end{array}\right] .
$$

(c) Since the inverse of a matrix is unique, the equality $(I+2 B)^{-1}=A^{-1}$ implies that $I+2 B=A$.

Hence,

$$
B=\frac{1}{2}(A-I)=\frac{1}{2}\left[\begin{array}{ll}
1 & 3 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
\frac{1}{2} & \frac{3}{2} \\
\frac{3}{2} & 2
\end{array}\right]
$$

7.3 The inequality $d_{1} d_{2} \cdots d_{n} \neq 0$ implies that $d_{i} \neq 0$ for every i.

So the matrix

$$
B=\left[\begin{array}{cccc}
\frac{1}{d_{1}} & 0 & \cdots & 0 \\
0 & \frac{1}{d_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{1}{d_{n}}
\end{array}\right]
$$

is well defined. Since $B D=D B=I$, the matrix B is the inverse of the matrix $D: B=D^{-1}$.
7.4 Because $A(3 I-A)=3 A-A^{2}=I$ and $(3 I-A) A=3 A-A^{2}=I$, the matrix A is invertible and $A^{-1}=3 I-A$.
7.5 For $n \in \mathbb{N}$ we introduce the statement $\mathcal{P}(n)$: the matrix A^{n} is invertible and $\left(A^{n}\right)^{-1}=\left(A^{-1}\right)^{n}$.

Since $A^{-1}=A^{-1}$, the statement is true for $n=1$.
Let $k \in \mathbb{N}$ and suppose that the statement $\mathcal{P}(k)$ is true.
So the matrix A^{k} is invertible and $\left(A^{k}\right)^{-1}=\left(A^{-1}\right)^{k}$.
Then, according to Theorem 2 (a), the matrix $A^{k+1}=A^{k} \cdot A$ is invertible and

$$
\left(A^{k+1}\right)^{-1}=\left(A^{k} \cdot A\right)^{-1}=A^{-1} \cdot\left(A^{k}\right)^{-1}=A^{-1} \cdot\left(A^{-1}\right)^{k}=\left(A^{-1}\right)^{k+1}
$$

Hence the statement $\mathcal{P}(k+1)$ is true.
So, by the Principle of Induction, the statement $\mathcal{P}(n)$ is true for all $n \in \mathbb{N}$.
7.6 The matrix B arises from the matrix A by subtracting two times the first row from the third one. If we apply this operation to the 3×3 identity matrix I, then the result is the elementary matrix

$$
E=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]
$$

Note that $E A=B$.

By using the inverse operation we obtain the matrix

$$
E^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]
$$

Note that $E^{-1} B=A$.
7.8 Because the matrix $A B$ is invertible, the matrix $(A B)^{-1}$ is well-defined, while

$$
A B(A B)^{-1}=I \quad \text { and } \quad(A B)^{-1} A B=I
$$

Since the matrix A is square and $A\left[B(A B)^{-1}\right]=I$, according to Theorem 7, the matrix A is invertible and $A^{-1}=B(A B)^{-1}$.
Since the matrix B is square, and $\left[(A B)^{-1} A\right] \cdot B=I$, according to Theorem 7 , the matrix B is invertible and $B^{-1}=(A B)^{-1} A$.
7.10 (a) (Partial) reduction of the matrix $\left[\begin{array}{ll}A & I\end{array}\right]$ leads to

$$
\left[\begin{array}{rrrrrr}
-1 & 3 & -4 & 1 & 0 & 0 \\
2 & 4 & 1 & 0 & 1 & 0 \\
-4 & 2 & -9 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrrrr}
1 & -3 & 4 & -1 & 0 & 0 \\
0 & 10 & -7 & 2 & 1 & 0 \\
0 & -10 & 7 & -4 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrrrr}
1 & -3 & 4 & -1 & 0 & 0 \\
0 & 10 & -7 & 2 & 1 & 0 \\
0 & 0 & 0 & -2 & 1 & 1
\end{array}\right]
$$

In view of the third row of this matrix, the matrix A is not invertible.
(b) (Partial) reduction of the matrix $\left[\begin{array}{ll}A & I\end{array}\right]$ leads to

$$
\begin{aligned}
{\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 3 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 3 & 5 & 0 & 0 & 0 & 1 & 0 \\
1 & 3 & 5 & 7 & 0 & 0 & 0 & 1
\end{array}\right] } & \rightarrow\left[\begin{array}{rrrrrrrr}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 3 & 5 & 0 & -1 & 0 & 1 & 0 \\
0 & 3 & 5 & 7 & -1 & 0 & 0 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrrrrrr}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 5 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 5 & 7 & 0 & -1 & 0 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrrrrrr}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 5 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 7 & 0 & 0 & -1 & 1
\end{array}\right]
\end{aligned}
$$

So the inverse of the matrix A exists and

$$
A^{-1}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-\frac{1}{3} & \frac{1}{3} & 0 & 0 \\
0 & -\frac{1}{5} & \frac{1}{5} & 0 \\
0 & 0 & -\frac{1}{7} & \frac{1}{7}
\end{array}\right]
$$

(c) (Partial) reduction of the matrix $\left[\begin{array}{ll}A & I\end{array}\right]$ leads to

$$
\left[\begin{array}{cccccccc}
0 & 0 & 0 & k_{1} & 1 & 0 & 0 & 0 \\
0 & 0 & k_{2} & 0 & 0 & 1 & 0 & 0 \\
0 & k_{3} & 0 & 0 & 0 & 0 & 1 & 0 \\
k_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccccccc}
k_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & k_{3} & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & k_{2} & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & k_{1} & 1 & 0 & 0 & 0
\end{array}\right] .
$$

So the inverse of the matrix A exists if $k_{i} \neq 0$ for all i and in that case

$$
A^{-1}=\left[\begin{array}{cccc}
0 & 0 & 0 & \frac{1}{k_{4}} \\
0 & 0 & \frac{1}{k_{3}} & 0 \\
0 & \frac{1}{k_{2}} & 0 & 0 \\
\frac{1}{k_{1}} & 0 & 0 & 0
\end{array}\right]
$$

7.12 Because $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear mapping, the standard matrix A corresponding to T is a (square) $n \times n$ matrix.

The following holds:

$$
\begin{aligned}
\text { the map } T \text { is surjective } & \stackrel{\text { by definition }}{\Longleftrightarrow} \text { there exists for all } \underline{b} \in \mathbb{R}^{n} \text { an } \underline{x} \in \mathbb{R}^{n} \text { such that } T(\underline{x})=\underline{b} \\
& \Longleftrightarrow \text { there exists for all } \underline{b} \in \mathbb{R}^{n} \text { an } \underline{x} \in \mathbb{R}^{n} \text { such that } A \underline{x}=\underline{b} \\
& \Longleftrightarrow \text { the system } A \underline{x}=\underline{b} \text { is solvable for every } \underline{b} \in \mathbb{R}^{n} \\
& \text { Theorem } 8
\end{aligned} \Longleftrightarrow \text { is invertible. }
$$

7.13 According to the Theorems 9 and 10 the mapping T is surjective and one-to-one.

Therefore, for every $\underline{w} \in \mathbb{R}^{n}$ there exists precisely one vector $\underline{v} \in \mathbb{R}^{n}$ such that $T(\underline{v})=\underline{w}$; furthermore $T^{-1}(\underline{w})=\underline{v}$.
By using the invertibility of A it follows that

$$
T(\underline{v})=\underline{w} \Longrightarrow A \underline{v}=\underline{w} \Longrightarrow \underline{v}=A^{-1} \underline{w} .
$$

This means that $T^{-1}(\underline{w})=A^{-1} \underline{w}$ for all $\underline{w} \in \mathbb{R}^{n}$.
Note that one cannot use the fact that T^{-1} is a left-multiplication by some matrix. First you have to prove that T^{-1} is a linear mapping.
7.14 (a) Reduction of the matrix A leads to

$$
\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Hence, the matrix A is invertible. Since T is the left-multiplication by an invertible matrix, T has an inverse.
(b) According to Exercise $13, T^{-1}$ is the left-multiplication by the matrix A^{-1}. Reduction of the matrix $\left[\begin{array}{ll}A & I\end{array}\right]$ leads to

$$
\left[\begin{array}{llll}
5 & 2 & 1 & 0 \\
2 & 1 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 0 & 1 & -2 \\
2 & 1 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 0 & 1 & -2 \\
0 & 1 & -2 & 5
\end{array}\right]
$$

So, for $\underline{x} \in \mathbb{R}^{2}$,

$$
T^{-1}(\underline{x})=A^{-1}(\underline{x})=\left[\begin{array}{rr}
1 & -2 \\
-2 & 5
\end{array}\right] \underline{x}=\left[\begin{array}{r}
x_{1}-2 x_{2} \\
-2 x_{1}+5 x_{2}
\end{array}\right] .
$$

