7.2 (a) Assume that A, B and C invertible.

Then, according to Theorem 2 (a) the matrix $A B$ is invertible too and $(A B)^{-1}=B^{-1} A^{-1}$.
Because $A B$ and C are invertible $(n \times n)$ matrices, again according to Theorem 2 (a), the matrix $(A B) C$ is invertible and

$$
((A B) C)^{-1}=C^{-1}(A B)^{-1}
$$

Hence, $A B C$ is invertible and $(A B C)^{-1}=C^{-1}(A B)^{-1}=C^{-1} B^{-1} A^{-1}$.
(b) If A is invertible, then

$$
A B=O \Longrightarrow A^{-1}(A B)=A^{-1} O \Longrightarrow\left(A^{-1} A\right) B=O \Longrightarrow B=O
$$

(c) Assume that B and $A B$ are invertible.

Because $A B$ is invertible, the matrix $(A B)^{-1}$ is well-defined, while furthermore $A B(A B)^{-1}=I$ and $(A B)^{-1} A B=I$.

Because the matrix B is invertible, the second equation implies that

$$
\begin{aligned}
(A B)^{-1} A B=I & \Longrightarrow\left[(A B)^{-1} A B\right] \cdot B^{-1}=I \cdot B^{-1} \\
& \Longrightarrow(A B)^{-1} A=B^{-1} \\
& \Longrightarrow B \cdot(A B)^{-1} A=B \cdot B^{-1} \\
& \Longrightarrow\left[B(A B)^{-1}\right] \cdot A=I
\end{aligned}
$$

while the first equation can be written as $A \cdot\left[B(A B)^{-1}\right]=I$.
This means that the matrix A is invertible and that $A^{-1}=B(A B)^{-1}$.
(d) If A is invertible, then according to Theorem $1(\mathrm{~b})$, the matrix A^{T} is invertible. Hence, in view of Theorem 2 (a), the matrix $A A^{T}$ is invertible.
(e) The statement is not true. Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$, then $A B=O$ and $A \neq O$ and $B \neq O$.
7.7 Assume that $A B=I$. Then the proof of Theorem 7 implies that B is invertible and that $B^{-1}=A$. Theorem 1 (a) implies that $A=B^{-1}$ is invertible and that $A^{-1}=\left(B^{-1}\right)^{-1}=B$.
7.9 Let M^{\prime} be the 4×4 matrix defined by

$$
M^{\prime}=\left[\begin{array}{cc}
A^{-1} & O \\
O & B^{-1}
\end{array}\right]
$$

According to Exercise 6.12,

$$
M M^{\prime}=\left[\begin{array}{cc}
A A^{-1} & O \\
O & B B^{-1}
\end{array}\right]=\left[\begin{array}{cc}
I & O \\
O & I
\end{array}\right]=I
$$

In view of Theorem 7, this implies that the matrix M is invertible and that $M^{-1}=M^{\prime}$.
7.10 (d) (Partial) reduction of the matrix $\left[\begin{array}{ll}A & I\end{array}\right]$ leads to

$$
\begin{aligned}
{\left[\begin{array}{llllll}
1 & 0 & 5 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
3 & 2 & 6 & 0 & 0 & 1
\end{array}\right] } & \rightarrow\left[\begin{array}{rrrrrr}
1 & 0 & 5 & 1 & 0 & 0 \\
0 & 1 & -5 & -1 & 1 & 0 \\
0 & 2 & -9 & -3 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrrrr}
1 & 0 & 5 & 1 & 0 & 0 \\
0 & 1 & -5 & -1 & 1 & 0 \\
0 & 0 & 1 & -1 & -2 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 6 & 10 & -5 \\
0 & 1 & 0 & -6 & -9 & 5 \\
0 & 0 & 1 & -1 & -2 & 1
\end{array}\right] .
\end{aligned}
$$

So the inverse of the matrix A exists and

$$
A^{-1}=\left[\begin{array}{rrr}
6 & 10 & -5 \\
-6 & -9 & 5 \\
-1 & -2 & 1
\end{array}\right]
$$

(e) (Partial) reduction of the matrix $\left[\begin{array}{ll}A & I\end{array}\right]$ leads to

$$
\left[\begin{array}{rrrrrr}
1 & -2 & -1 & 1 & 0 & 0 \\
-1 & 5 & 6 & 0 & 1 & 0 \\
5 & -4 & 5 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrrrr}
1 & -2 & -1 & 1 & 0 & 0 \\
0 & 3 & 5 & 1 & 1 & 0 \\
0 & 6 & 10 & -5 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrrrr}
1 & -2 & -1 & 1 & 0 & 0 \\
0 & 3 & 5 & 1 & 1 & 0 \\
0 & 0 & 0 & -7 & -2 & 1
\end{array}\right]
$$

According to the last row of this matrix, the matrix A is not invertible.
7.11 (a) Assume that the system $A \underline{x}=\underline{0}$ only has the trivial solution. Then, according to Theorem 6 , the matrix A is invertible. So, by Theorem $2(\mathrm{~b})$, the matrix A^{k} is invertible too. By using Theorem 6 again, this implies that the system $A^{k} \underline{x}=\underline{0}$ only has the trivial solution.
(b) Assume that the system $\boldsymbol{A} \underline{x}=\underline{0}$ only has the trivial solution. Then, according to Theorem 6 , the matrix A is invertible. So, by Theorem $2(\mathrm{~b})$, the matrix $Q A$ is invertible too. By using Theorem 6 again, this implies that the system $Q A \underline{x}=\underline{0}$ only has the trivial solution.
Assume that the system $Q A \underline{x}=\underline{0}$ only has the trivial solution.
We will show that the system $A \underline{x}=\underline{0}$ only has the trivial solution too.
So suppose that $A \underline{s}=\underline{0}$. Then $Q A \underline{s}=Q \underline{0}=\underline{0}$. Hence, \underline{s} is a solution of the system $Q A \underline{x}=\underline{0}$. Then however, $\underline{s}=\underline{0}$.
7.15 (a) Note that

$$
T(\underline{x})=\left[\begin{array}{c}
a_{1} x_{1} \\
a_{2} x_{2} \\
\vdots \\
a_{n} x_{n}
\end{array}\right]=\left[\begin{array}{cccc}
a_{1} & 0 & \cdots & 0 \\
0 & a_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

So T is the left-multiplication by the matrix

$$
A=\left[\begin{array}{cccc}
a_{1} & 0 & \cdots & 0 \\
0 & a_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{n}
\end{array}\right]
$$

According to the Theorems 9 and 6 , the mapping T is one-to-one if and only if the system $A \underline{x}=\underline{0}$ only has the trivial solution.

Obviously

$$
A \underline{x}=\underline{0} \Longleftrightarrow\left[\begin{array}{c}
a_{1} x_{1} \\
a_{2} x_{2} \\
\vdots \\
a_{n} x_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

only has the trivial solution if $a_{i} \neq 0$ for all i.
(b) According to Theorem 10 and the foregoing part, the mapping is surjective if $a_{i} \neq 0$ for all i.
(c) If $a_{i} \neq 0$ for all i, then

$$
A^{-1}=\left[\begin{array}{cccc}
a_{1}^{-1} & 0 & \cdots & 0 \\
0 & a_{2}^{-1} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{n}^{-1}
\end{array}\right]
$$

So, for $\underline{x} \in \mathbb{R}^{n}$,

$$
T^{-1}(\underline{x})=A^{-1} \underline{x}=\left[\begin{array}{c}
x_{1} / a_{1} \\
x_{2} / a_{2} \\
\vdots \\
x_{n} / a_{n}
\end{array}\right] .
$$

