8.7 We expand the determinant of the matrix M along the first column:

$$\det\begin{bmatrix} a_{11} & a_{12} & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ 0 & 0 & b_{11} & b_{12} \\ 0 & 0 & b_{21} & b_{22} \end{bmatrix} = a_{11} \cdot \det\begin{bmatrix} a_{22} & 0 & 0 \\ 0 & b_{11} & b_{12} \\ 0 & b_{21} & b_{22} \end{bmatrix} - a_{21} \cdot \det\begin{bmatrix} a_{12} & 0 & 0 \\ 0 & b_{11} & b_{12} \\ 0 & b_{21} & b_{22} \end{bmatrix}$$
$$= a_{11}a_{22} \cdot \det B - a_{21}a_{12} \cdot \det B = [a_{11}a_{22} - a_{21}a_{12}] \cdot \det B$$
$$= \det A \cdot \det B.$$

8.8 (c) Reduction leads to

$$\det\begin{bmatrix} 0 & 1 & 1 & 1 \\ \frac{1}{2} & \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{2}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\ -\frac{1}{3} & \frac{2}{3} & 0 & 0 \end{bmatrix} = -\det\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 1 & \frac{1}{2} \\ 0 & 1 & 1 & 1 \\ \frac{2}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\ -\frac{1}{3} & \frac{2}{3} & 0 & 0 \end{bmatrix} = -\frac{1}{2} \det\begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ \frac{2}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\ -\frac{1}{3} & \frac{2}{3} & 0 & 0 \end{bmatrix}$$
$$= -\frac{1}{2} \det\begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & -\frac{1}{3} & -1 & -\frac{2}{3} \\ 0 & 1 & \frac{2}{3} & \frac{1}{3} \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & -\frac{2}{3} & -\frac{1}{3} \\ 0 & 0 & -\frac{1}{3} & -\frac{2}{3} \end{bmatrix}$$
$$= \frac{1}{3} \det\begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 & -\frac{1}{2} \end{bmatrix} = -\frac{1}{6}.$$

8.9 Let $n \in \mathbb{N}$. We introduce for $k \in \mathbb{N}$ the statement $\mathcal{P}(k)$:

for an $n \times n$ matrix A and elementary matrices E_1, E_2, \ldots, E_k of the same size,

$$\det(E_k E_{k-1} \cdots E_1 A) = (\det E_k)(\det E_{k-1}) \cdots (\det E_1)(\det A).$$

- (1) First we show that the statement P(1) is true: according to the Theorems 3 and 4 $\det(E_1A) = (\det E_1)(\det A)$.
- (2) Let $l \in \mathbb{N}$ and suppose that the statement P(l) is true; so if A is an $n \times n$ matrix and E_1, E_2, \ldots, E_l are elementary matrices of the same size, then

$$\det(E_l E_{l-1} \cdots E_1 A) = (\det E_l)(\det E_{l-1}) \cdots (\det E_1)(\det A).$$

Let E_{l+1} be an $n \times n$ elementary matrix.

Then, by the Theorems 3 and 4 and the induction hypothesis,

$$\det(E_{l+1}E_l\cdots E_1A) = \det E_{l+1}\det(E_l\cdots E_1A)$$
$$= (\det E_{l+1})(\det E_l)(\det E_{l-1})\cdots (\det E_1)(\det A).$$

This proves that the statement P(l+1) is true.

According to the Principle of Induction, the statement P(k) is true for every $k \in \mathbb{N}$.

8.10 By applying Theorem 4, we find that

(a)
$$\det \begin{bmatrix} d & e & f \\ g & h & i \\ a & b & c \end{bmatrix} = -\det \begin{bmatrix} a & b & c \\ g & h & i \\ d & e & f \end{bmatrix} = \det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = -6.$$

(b)
$$\det \begin{bmatrix} -3a & -3b & -3c \\ d & e & f \\ q - 4d & h - 4e & i - 4f \end{bmatrix} = -3 \det \begin{bmatrix} a & b & c \\ d & e & f \\ q - 4d & h - 4e & i - 4f \end{bmatrix} = -3 \det \begin{bmatrix} a & b & c \\ d & e & f \\ q & h & i \end{bmatrix} = 18.$$

8.12 (b) Note that

$$\det A = \det \begin{bmatrix} 1 & 2 & 4 \\ 0 & -5 & -6 \\ 0 & 3 - 2a & 2 - 4a \end{bmatrix} = -5 \det \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & \frac{6}{5} \\ 0 & 3 - 2a & 2 - 4a \end{bmatrix}$$
$$= -5[1 \cdot (2 - 4a) - \frac{6}{5} \cdot (3 - 2a)] = 8 + 8a.$$

So det $A = 0 \iff 8 + 8a = 0 \iff a = -1$.

Hence, the matrix A is not invertible if a = -1.

8.14 According to Theorem 7, $\det A^{-1} \det A = \det(A^{-1}A) = \det I = 1$. Because the matrix A is invertible, $\det A \neq 0$. So

$$\det A^{-1} = \frac{1}{\det A}.$$

8.17 (a) We start wit considering the 2×2 case. Then

$$B = \begin{bmatrix} a_{11} & -a_{12} \\ -a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

So
$$D = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
.

For the general situation, let D be the $n \times n$ diagonal matrix with

$$d_{ii} = \begin{cases} 1 & \text{if } i \text{ odd} \\ -1 & \text{if } i \text{ even} \end{cases}.$$

Then

$$DAD = \begin{bmatrix} 1 & 0 & \cdots \\ 0 & -1 & \cdots \\ \vdots & \vdots & \cdots \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \cdots \\ a_{21} & a_{22} & \cdots \\ \vdots & \vdots & \cdots \end{bmatrix} \begin{bmatrix} 1 & 0 & \cdots \\ 0 & -1 & \cdots \\ \vdots & \vdots & \cdots \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & \cdots \\ 0 & -1 & \cdots \\ 0 & -1 & \cdots \\ \vdots & \vdots & \cdots \end{bmatrix} \begin{bmatrix} a_{11} & -a_{12} & \cdots \\ a_{21} & -a_{22} & \cdots \\ \vdots & \vdots & \cdots \end{bmatrix} = \begin{bmatrix} a_{11} & -a_{12} & \cdots \\ -a_{21} & a_{22} & \cdots \\ \vdots & \vdots & \cdots \end{bmatrix} = B.$$

Alternative

For any diagonal matrix D,

$$b_{ij} = d_i a_{ij} d_j.$$

As $b_{ij} = (-1)^{i+j} a_{ij}$, we have to choose D in such a way that $(-1)^{i+j} = d_i d_j$. This leads to the solution mentioned above.

(b) Because $\det D = \pm 1$, it follows that

$$\det B = \det (ADA) = \det D \cdot \det A \cdot \det D = \det A \cdot (\det D)^2 = \det A.$$

8.21 Because det A=1, Theorem 5 implies that the matrix A is invertible. In view of Cramer's Rule (Theorem 8), the entry s_j of the unique solution \underline{s} of the system $A\underline{x}=\underline{b}$ is

$$\frac{\det A_j(\underline{b})}{\det A} = \det A_j(\underline{b}).$$

Since the coefficients of the matrix A and the entries of the vector \underline{b} are integers, $\det A_j(\underline{b})$ is an integer too. So all the entries of the solution vector \underline{s} are integers.