8.23 (a) Note that

$$
\operatorname{det}(A-\lambda I)=0 \Longleftrightarrow \operatorname{det}\left[\begin{array}{cc}
3-\lambda & 0 \\
8 & -1-\lambda
\end{array}\right]=0 \Longleftrightarrow(3-\lambda)(-1-\lambda)=0 .
$$

So the eigenvalues are $\lambda=3$ and $\lambda=-1$.
(b) Note that

$$
\begin{aligned}
\operatorname{det}(A-\lambda I)=0 & \Longleftrightarrow \operatorname{det}\left[\begin{array}{cc}
10-\lambda & -9 \\
4 & -2-\lambda
\end{array}\right]=0 \Longleftrightarrow(10-\lambda)(-2-\lambda)+36=0 \\
& \Longleftrightarrow \lambda^{2}-8 \lambda+16=0 \Longleftrightarrow(\lambda-4)^{2}=0 .
\end{aligned}
$$

So $\lambda=4$ is the only eigenvalue.
(c) Note that

$$
\operatorname{det}(A-\lambda I)=0 \Longleftrightarrow \operatorname{det}\left[\begin{array}{cc}
-2-\lambda & -7 \\
1 & 2-\lambda
\end{array}\right] \Longleftrightarrow(-2-\lambda)(2-\lambda)+7=0 \Longleftrightarrow \lambda^{2}+3=0 .
$$

Hence, the matrix doesn't have any eigenvalue.
8.24 Because

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left[\begin{array}{ccc}
4-\lambda & 0 & 1 \\
-2 & 1-\lambda & 0 \\
-2 & 0 & 1-\lambda
\end{array}\right]=(1-\lambda) \operatorname{det}\left[\begin{array}{cc}
4-\lambda & 1 \\
-2 & 1-\lambda
\end{array}\right] \\
& =(1-\lambda)[(4-\lambda)(1-\lambda)+2]=(1-\lambda)\left[\lambda^{2}-5 \lambda+6\right] \\
& =(1-\lambda)(\lambda-2)(\lambda-3),
\end{aligned}
$$

we find that $\operatorname{det}(A-\lambda I)=0 \Longleftrightarrow \lambda=1$ or $\lambda=2$ or $\lambda=3$.
Hence, $\lambda=1, \lambda=2$ and $\lambda=3$ are the eigenvalues of the matrix A.
8.25 (a) The eigenvalues are $\lambda=-1$ and $\lambda=5$.
(b) The eigenvalues are $\lambda=3, \lambda=7$ and $\lambda=1$.
(c) The eigenvalues are $\lambda=-\frac{1}{2}, \lambda=-\frac{1}{3}, \lambda=1$ and $\lambda=\frac{1}{2}$.
8.26 The eigenvalues of the matrix A are $\lambda=1, \lambda=\frac{1}{2}, \lambda=0$ and $\lambda=2$.

The eigenvalues of the matrix A^{9} are $\lambda=1, \lambda=\left(\frac{1}{2}\right)^{9}, \lambda=0$ and $\lambda=2^{9}$.
8.27 (a) For the eigenvalue $\lambda=3$, reduction of the coefficient matrix of the system $(A-\lambda I) \underline{x}=\underline{0}$ leads to

$$
\left[\begin{array}{rr}
0 & 0 \\
8 & -4
\end{array}\right] \rightarrow\left[\begin{array}{rr}
1 & -\frac{1}{2} \\
0 & 0
\end{array}\right]
$$

Hence,

$$
E_{3}=\left\{\left.c\left[\begin{array}{l}
1 \\
2
\end{array}\right] \right\rvert\, c \in \mathbb{R}\right\} .
$$

So the vector $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ spans the eigenspace E_{3}.
For the eigenvalue $\lambda=-1$, reduction of the coefficient matrix of the system $(A-\lambda I) \underline{x}=\underline{0}$ leads to

$$
\left[\begin{array}{ll}
4 & 0 \\
8 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

Hence,

$$
E_{-1}=\left\{\left.c\left[\begin{array}{l}
0 \\
1
\end{array}\right] \right\rvert\, c \in \mathbb{R}\right\}
$$

So the vector $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ spans the eigenspace E_{-1}.
(b) For the eigenvalue $\lambda=4$, reduction of the coefficient matrix of the system $(A-\lambda I) \underline{x}=\underline{0}$ leads to

$$
\left[\begin{array}{ll}
6 & -9 \\
4 & -6
\end{array}\right] \rightarrow\left[\begin{array}{rr}
1 & -\frac{3}{2} \\
0 & 0
\end{array}\right]
$$

Hence,

$$
E_{4}=\left\{\left.c\left[\begin{array}{l}
3 \\
2
\end{array}\right] \right\rvert\, c \in \mathbb{R}\right\}
$$

So the vector $\left[\begin{array}{l}3 \\ 2\end{array}\right]$ spans the eigenspace E_{4}.
(c) There are no eigenspaces.
8.32 If $A \underline{v}=\lambda \underline{v}$ and $\underline{v} \neq \underline{0}$, then

$$
(A-c I) \underline{v}=A \underline{v}-c I \underline{v}=\lambda \underline{v}-c \underline{v}=(\lambda-c) \underline{v} .
$$

Hence, \underline{v} is an eigenvector for the matrix $A-c I$ corresponding to the eigenvalue $\lambda-c$.
8.33 Note that

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}(A-\lambda I)^{T}=\operatorname{det}\left(A^{T}-\lambda I\right)
$$

So $\operatorname{det}(A-\lambda I)=0 \Longleftrightarrow \operatorname{det}\left(A^{T}-\lambda I\right)=0$. The solutions of the first equation are the eigenvalues of the matrix A (if any) and the solutions of the second equation are the eigenvalues of the matrix A^{T} (if any).
9.1 We will prove that the zero vector is unique.

Suppose that $\underline{0}$ and $\underline{0}^{\prime}$ are two zero vectors. Then, in view of property (3),

$$
\underline{0}+\underbrace{\underline{0}^{\prime}}_{\text {zero vector }}=\underline{0} \text { and } \underbrace{\underline{0}}_{\text {zero vector }}+\underline{0}^{\prime}=\underline{0}^{\prime} \text {. }
$$

So $\underline{0}=\underline{0}+\underline{0}^{\prime}=\underline{0}^{\prime}$. Hence the two zero vectors are equal.
We will prove that each vector \underline{u} in V has a unique opposite.
Assume that \underline{u}_{1} and \underline{u}_{2} are both opposites of \underline{u}. Then, in view of property (4),

$$
\underline{u}+\underline{u}_{1}=\underline{u}+\underline{u}_{2}=\underline{0} .
$$

So

$$
\begin{gathered}
\underline{u}_{1} \stackrel{\text { property } 3}{=} \underline{u}_{1}+\underline{0}=\underline{u}_{1}+\left(\underline{u}+\underline{u}_{2}\right) \stackrel{\text { property } 2}{=}\left(\underline{u}_{1}+\underline{u}\right)+\underline{u}_{2} \\
\stackrel{\text { property } 1}{=}\left(\underline{u}+\underline{u}_{1}\right)+\underline{u}_{2}=\underline{0}+\underline{u}_{2} \stackrel{\text { property } 3}{=} \underline{u}_{2} .
\end{gathered}
$$

Hence, the vectors \underline{u}_{1} and \underline{u}_{2} are equal.
9.2 Let $\underline{u} \in V$ and $c \in \mathbb{R}$ and assume that $c \underline{u}=\underline{0}$.

Suppose that $c \neq 0$ [if $c=0$, then the proof is complete!]. Then

$$
c \underline{u}=\underline{0} \Longrightarrow \frac{1}{c} \cdot(c \underline{u})=\frac{1}{c} \cdot \underline{0} .
$$

However,

$$
\frac{1}{c} \cdot(c \underline{u}) \stackrel{\text { property } 7}{=}\left(\frac{1}{c} \cdot c\right) \underline{u}=1 \cdot \underline{u} \stackrel{\text { property } 8}{=} \underline{u}
$$

and in view of Theorem 1(b),

$$
\frac{1}{c} \cdot \underline{0}=\underline{0}
$$

Hence, $\underline{u}=\underline{0}$.
9.3 Because

$$
(-1) \underline{u}=\left[\begin{array}{r}
-u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] \quad \text { and } \quad-\underline{u}=\left[\begin{array}{l}
-u_{1} \\
-u_{2} \\
-u_{3}
\end{array}\right]
$$

in general $-\underline{u} \neq(-1) \underline{u}$. In view of property (c) of Theorem 1 this implies that the set V is not a vector space.
9.4 We will prove that the set V together with the operations defined in the exercise is a vector space.

First of all note that the non-empty set V is closed with respect to addition and scalar multiplication.
If $\left[\begin{array}{l}x \\ 0\end{array}\right]$ and $\left[\begin{array}{l}y \\ 0\end{array}\right]$ are in V, then $\left[\begin{array}{l}x \\ 0\end{array}\right]+\left[\begin{array}{l}y \\ 0\end{array}\right]=\left[\begin{array}{c}x+y \\ 0\end{array}\right]$ is contained in V.
If $\left[\begin{array}{l}x \\ 0\end{array}\right] \in V$ and $c \in \mathbb{R}$, then $c\left[\begin{array}{l}x \\ 0\end{array}\right]=\left[\begin{array}{c}c x \\ 0\end{array}\right] \in V$.
Next we will check all the properties.
(1) According to the properties of real numbers,

$$
\left[\begin{array}{l}
x \\
0
\end{array}\right]+\left[\begin{array}{l}
y \\
0
\end{array}\right]=\left[\begin{array}{c}
x+y \\
0
\end{array}\right]=\left[\begin{array}{c}
y+x \\
0
\end{array}\right]=\left[\begin{array}{l}
y \\
0
\end{array}\right]+\left[\begin{array}{l}
x \\
0
\end{array}\right]
$$

(2) According to the properties of real numbers,

$$
\begin{aligned}
{\left[\begin{array}{l}
x \\
0
\end{array}\right]+\left(\left[\begin{array}{l}
y \\
0
\end{array}\right]+\left[\begin{array}{l}
z \\
0
\end{array}\right]\right) } & =\left[\begin{array}{l}
x \\
0
\end{array}\right]+\left[\begin{array}{c}
y+z \\
0
\end{array}\right]=\left[\begin{array}{c}
x+(y+z) \\
0
\end{array}\right]=\left[\begin{array}{c}
(x+y)+z \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
x+y \\
0
\end{array}\right]+\left[\begin{array}{l}
z \\
0
\end{array}\right]=\left(\left[\begin{array}{l}
x \\
0
\end{array}\right]+\left[\begin{array}{l}
y \\
0
\end{array}\right]\right)+\left[\begin{array}{l}
z \\
0
\end{array}\right]
\end{aligned}
$$

(3) Note that the vector $\left[\begin{array}{l}0 \\ 0\end{array}\right] \in V$ is the zero vector because

$$
\left[\begin{array}{l}
x \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
x+0 \\
0
\end{array}\right]=\left[\begin{array}{l}
x \\
0
\end{array}\right]
$$

and, similarly, $\left[\begin{array}{l}0 \\ 0\end{array}\right]+\left[\begin{array}{l}x \\ 0\end{array}\right]=\left[\begin{array}{l}x \\ 0\end{array}\right]$.
(4) Note that the vector $\left[\begin{array}{c}-x \\ 0\end{array}\right] \in V$ is the negative of the vector $\left[\begin{array}{l}x \\ 0\end{array}\right]$:

$$
\left[\begin{array}{l}
x \\
0
\end{array}\right]+\left[\begin{array}{c}
-x \\
0
\end{array}\right]=\left[\begin{array}{c}
x+(-x) \\
0
\end{array}\right]=\left[\begin{array}{c}
x-x \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

(5) According to the properties of real numbers,

$$
c\left(\left[\begin{array}{l}
x \\
0
\end{array}\right]+\left[\begin{array}{l}
y \\
0
\end{array}\right]\right)=c\left[\begin{array}{c}
x+y \\
0
\end{array}\right]=\left[\begin{array}{c}
c(x+y) \\
0
\end{array}\right]=\left[\begin{array}{c}
c x+c y \\
0
\end{array}\right]=\left[\begin{array}{c}
c x \\
0
\end{array}\right]+\left[\begin{array}{c}
c y \\
0
\end{array}\right]=c\left[\begin{array}{l}
x \\
0
\end{array}\right]+c\left[\begin{array}{l}
y \\
0
\end{array}\right] .
$$

(6) According to the properties of real numbers,

$$
(c+d)\left[\begin{array}{l}
x \\
0
\end{array}\right]=\left[\begin{array}{c}
(c+d) x \\
0
\end{array}\right]=\left[\begin{array}{c}
c x+d x \\
0
\end{array}\right]=\left[\begin{array}{c}
c x \\
0
\end{array}\right]+\left[\begin{array}{c}
d x \\
0
\end{array}\right]=c\left[\begin{array}{l}
x \\
0
\end{array}\right]+d\left[\begin{array}{l}
x \\
0
\end{array}\right] .
$$

(7) According to the properties of real numbers,

$$
c\left(d\left[\begin{array}{l}
x \\
0
\end{array}\right]\right)=c\left[\begin{array}{c}
d x \\
0
\end{array}\right]=\left[\begin{array}{c}
c(d x) \\
0
\end{array}\right]=\left[\begin{array}{c}
(c d) x \\
0
\end{array}\right]=(c d)\left[\begin{array}{l}
x \\
0
\end{array}\right] .
$$

(8) According to the properties of real numbers,

$$
1 \cdot\left[\begin{array}{l}
x \\
0
\end{array}\right]=\left[\begin{array}{c}
1 \cdot x \\
0
\end{array}\right]=\left[\begin{array}{l}
x \\
0
\end{array}\right] .
$$

Note that the fact that V is a subset of \mathbb{R}^{2} implies that it is sufficient to check the properties 3 and 4. Since the other properties are satisfied for the elements of \mathbb{R}^{2}, they are certainly satisfied for the elements of V.
9.7 Let $A, B \in \mathbb{M}_{2 \times 2}$ and $k \in \mathbb{R}$. Then

$$
\begin{aligned}
& T(A+B)= {\left[\begin{array}{c}
a_{11}+b_{11} \\
\vdots \\
a_{22}+b_{22}
\end{array}\right]=\left[\begin{array}{c}
a_{11} \\
\vdots \\
a_{22}
\end{array}\right]+\left[\begin{array}{c}
b_{11} \\
\vdots \\
b_{22}
\end{array}\right]=T(A)+T(B) } \\
& T(k A)=\left[\begin{array}{c}
k a_{11} \\
\vdots \\
k a_{22}
\end{array}\right]=k\left[\begin{array}{c}
a_{11} \\
\vdots \\
a_{22}
\end{array}\right]=k \cdot T(A) .
\end{aligned}
$$

So the mapping T is linear.
The mapping T is one-to-one:
If $T(A)=T(B)$, then

$$
\left[\begin{array}{l}
a_{11} \\
a_{12} \\
a_{21} \\
a_{22}
\end{array}\right]=\left[\begin{array}{l}
b_{11} \\
b_{12} \\
b_{21} \\
b_{22}
\end{array}\right] \Longrightarrow a_{11}=b_{11}, a_{12}=b_{12}, a_{21}=b_{21} \text { and } a_{22}=b_{22} \Longrightarrow A=B
$$

The mapping T is surjective:
If $\underline{v} \in \mathbb{R}^{4}$, then

$$
T\left(\left[\begin{array}{ll}
v_{1} & v_{2} \\
v_{3} & v_{4}
\end{array}\right]\right)=\underline{v}
$$

9.9 (a) Let $p, q \in \mathbb{P}_{2}$ and $k \in \mathbb{R}$. Say $p(x)=a_{0}+a_{1} x+a_{2} x^{2}$ and $q(x)=b_{0}+b_{1} x+b_{2} x^{2}$, where $x \in \mathbb{R}$.

Note that

$$
(p+q)(x)=a_{0}+b_{0}+\left(a_{1}+b_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2} .
$$

So for the polynomial $T(p+q)$ it holds that for all $x \in \mathbb{R}$

$$
\begin{aligned}
T(p+q)(x) & =a_{0}+b_{0}+\left(a_{1}+b_{1}\right)(x+1)+\left(a_{2}+b_{2}\right)(x+1)^{2} \\
& =a_{0}+a_{1}(x+1)+a_{2}(x+1)^{2}+b_{0}+b_{1}(x+1)+b_{2}(x+1)^{2} \\
& =T(p)(x)+T(q)(x),
\end{aligned}
$$

or: $T(p+q)=T(p)+T(q)$.
Observe that

$$
(k \cdot p)(x)=k a_{0}+k a_{1} x^{2}+k a_{2} x^{2} .
$$

So for the polynomial $T(k \cdot p)$ it holds that for all $x \in \mathbb{R}$

$$
T(k \cdot p)(x)=k a_{0}+k a_{1}(x+1)+k a_{2}(x+1)^{2}=k\left[a_{0}+a_{1}(x+1)+a_{2}(x+1)^{2}\right]=k \cdot T(p)
$$

or: $T(k \cdot p)=k T(p)$. So T is a linear mapping .

