8.23 (a) Note that

3—-A 0

det(A — M) = 0 < det
8 —1-A

]:0<:>(3—A)(—1—,\)=0.

So the eigenvalues are A = 3 and A = —1.

(b) Note that

10-XA -9
4 —2-A
= AN -8\ +16=0+= (A—4)?=0.

det(A/\I)O<:>det[ }0<:>(10A)(2A)+360

So A =4 is the only eigenvalue.

(c) Note that

—2-X -7

det(A — M) = 0 <> det
1 2—A

}<:>(—2—>\)(2—)\)+7=0<:>>\2+3:0.

Hence, the matrix doesn’t have any eigenvalue.

8.24 Because
4— A 1
det(A—A)=det | =2 1-X 0 :(1—)\)det[ 5 1 /\}
-2 0 1—-A
=(1-N[A=N1T=X)+2=(1-X)[A\>—5)r+6]
=1 =NA=-2)(A-3),
we find that det(A —A) =0<= A A=1lorA=2o0r A =3.

Hence, A = 1, A = 2 and A = 3 are the eigenvalues of the matrix A.

8.25 (a) The eigenvalues are A = —1 and A = 5.
(b) The eigenvalues are A =3, A =7 and A = 1.

(¢) The eigenvalues are A = f%, A= f%, A=1and A= %

A=0and A =2.

8.26 The eigenvalues of the matrix A are A =1, A = z,
The eigenvalues of the matrix A° are A\ =1, A = (%)9, A=0and X =2°

1
2

8.27 (a) For the eigenvalue A = 3, reduction of the coefficient matrix of the system (A — AI)z = 0 leads to
0 0 1 -1
— .
8 —4 0 0
1
b L[] cem)

1
So the vector [2} spans the eigenspace Ej3.

Hence,

For the eigenvalue A = —1, reduction of the coefficient matrix of the system (A4 — AI)z = 0 leads to

s ool o)



Hence,
0
E_lz{c[l} | CGIR}.

0
So the vector [J spans the eigenspace E_1.
(b) For the eigenvalue A\ = 4, reduction of the coefficient matrix of the system (A — A\I)z = 0 leads to

Ll )
5= o2 cem).

3
So the vector [2} spans the eigenspace Ey.

Hence,

(c¢) There are no eigenspaces.
8.32 If Av = \v and v # 0, then
(A—clhhv=Av—clv=Av—cv=(\—c)v.
Hence, v is an eigenvector for the matrix A — ¢l corresponding to the eigenvalue A — c.

8.33 Note that
det(A — M) = det(A — AT = det(AT — \I).

So det(A — AI) = 0 <= det(AT — A\I) = 0. The solutions of the first equation are the eigenvalues of

the matrix A (if any) and the solutions of the second equation are the eigenvalues of the matrix A7

(if any).

9.1 We will prove that the zero vector is unique.

Suppose that 0 and 0" are two zero vectors. Then, in view of property (3),

0+ 0 =0 and 0 +0=0.
~— ~—~
zero vector zero vector

So 0 =0+0" = 0. Hence the two zero vectors are equal.
We will prove that each vector v in V' has a unique opposite.

Assume that u; and u, are both opposites of u. Then, in view of property (4),
utu =utu, =0

So
property 3

t;
u uy +0 = uy + (u+ uy) PPEY 7

uy +u) + Uy

property 3

property 1
=7 (utu)tuy=0+u =" u,.

Hence, the vectors u; and uy are equal.



9.2

9.3

9.4

Let u € V and ¢ € IR and assume that cu = 0.

Suppose that ¢ # 0 [if ¢ = 0, then the proof is complete!]. Then

1 1
cgzgﬁ—-(cg) =—--0.
c c
However,
l ) (CQ) propirty 7 (l ) C)Q -1 u propirty 8 w
c c
and in view of Theorem 1(b),
1
~.0=0
c
Hence, u = 0.
Because
—U1 —U1
(—Du = Us and —u=|—-us|,
us —us3

in general —u # (—1)u. In view of property (c) of Theorem 1 this implies that the set V is not a

vector space.

We will prove that the set V' together with the operations defined in the exercise is a vector space.

First of all note that the non-empty set V' is closed with respect to addition and scalar multiplication.

If {Z] and {y] are in V, then [Z} + [y} = [Zer] is contained in V.
0 0 0 0 0
cx

x x
If{ ]GVanchIR,thenc{ ]{
0 0 0

Next we will check all the properties.

Jev.

(1) According to the properties of real numbers,
T y| |r+yl| |y+z| |y T
{0]+M_{ 0 }_[ 0 ]_[0]+{0]'
(2) According to the properties of real numbers,
T z T +z r+(y+ +y)+
R S 1) R v R el i o
0 0 0 0 0 0 0
r+y Z T Y z
= +1 = + +10]-
o1+l = (o)D) Lo
0 :
(3) Note that the vector [0] € V is the zero vector because
b= o)1)= 6]
0 ol [ o ] [o
s [g] + ] = o)
nd, similar = .
and, similarly, 0 0 0

x x
(4) Note that the vector [ 0 ] € V is the negative of the vector {O ]:



(5) According to the properties of real numbers,

(Gl BD=la1-17 -7 - 3]

(6) According to the properties of real numbers,

(c+d) [ﬂ = [(Ct)d)x} _ [cx—gdx' _ [Cw] N [dx] :C[x' a [z

(7) According to the properties of real numbers,
() =[S -1 e 3]
0 0 0 0 0
(8) According to the properties of real numbers,
x 1.z T
1. = = .
L) =1o-15)

Note that the fact that V is a subset of IR? implies that it is sufficient to check the properties 3 and
4. Since the other properties are satisfied for the elements of IR?, they are certainly satisfied for the

elements of V.

9.7 Let A, B € IMax2 and k € IR. Then

fair + b1 an b11
T(A+ B) = =| |+ |=TA+T(B)
L agz + b2 azo b2
ka1 ari
and T(kA) = Sl =k | =k-T(A).
L kago a2

So the mapping T is linear.
The mapping T is one-to-one:

If T(A) =T(B), then

a11 b1
@12 b2
= - a11 :bu,alg :b12,a21 :bgl and a2 :b22 — A= B.
a21 ba1
a22 bao

The mapping 7' is surjective:

If v € IR, then

9.9 (a) Let p,q € Py and k € IR. Say p(z) = ap + a1x + a2 and g(x) = by + byx + bex?, where z € IR.

Note that
(p+ @)(x) = ao + bo + (a1 + b1)x + (ag + by)z>.



So for the polynomial T'(p + ¢) it holds that for all z € R
T(p+q)(x) = ap + by + (a1 +b1)(x + 1) + (az + by)(z +1)?
=ap+ar(x+1)+az(z 4+ 1)? +bo +by(x+ 1)+ bo(x +1)?
=T(p)(z) + T(q)(x),

or: T(p+q) =T(p) + T(a)-
Observe that
(k p)(x) = kCLO + kall‘Q + ka21'2.

So for the polynomial T'(k - p) it holds that for all z € R
T(k-p)(z) = kap + kay(z + 1) + kaz(x +1)® = k[ag + ay(z + 1) + as(z + 1)%] = k- T(p),

or: T(k-p) =kT(p). So T is a linear mapping .



