
8.23 (a) Note that

det(A− λI) = 0 ⇐⇒ det

[
3− λ 0

8 −1− λ

]

= 0 ⇐⇒ (3− λ)(−1− λ) = 0.

So the eigenvalues are λ = 3 and λ = −1.

(b) Note that

det(A− λI) = 0 ⇐⇒ det

[
10− λ −9

4 −2− λ

]

= 0 ⇐⇒ (10− λ)(−2− λ) + 36 = 0

⇐⇒ λ2 − 8λ+ 16 = 0 ⇐⇒ (λ− 4)2 = 0.

So λ = 4 is the only eigenvalue.

(c) Note that

det(A− λI) = 0 ⇐⇒ det

[
−2− λ −7

1 2− λ

]

⇐⇒ (−2− λ)(2− λ) + 7 = 0 ⇐⇒ λ2 + 3 = 0.

Hence, the matrix doesn’t have any eigenvalue.

8.24 Because

det(A− λI) = det






4− λ 0 1

−2 1− λ 0

−2 0 1− λ




 = (1− λ) det

[
4− λ 1

−2 1− λ

]

= (1− λ) [(4− λ)(1− λ) + 2] = (1− λ)
[
λ2 − 5λ+ 6

]

= (1− λ)(λ − 2)(λ− 3),

we find that det(A− λI) = 0 ⇐⇒ λ = 1 or λ = 2 or λ = 3.

Hence, λ = 1, λ = 2 and λ = 3 are the eigenvalues of the matrix A.

8.25 (a) The eigenvalues are λ = −1 and λ = 5.

(b) The eigenvalues are λ = 3, λ = 7 and λ = 1.

(c) The eigenvalues are λ = − 1

2
, λ = − 1

3
, λ = 1 and λ = 1

2
.

8.26 The eigenvalues of the matrix A are λ = 1, λ = 1

2
, λ = 0 and λ = 2.

The eigenvalues of the matrix A9 are λ = 1, λ =
(
1

2

)9
, λ = 0 and λ = 29.

8.27 (a) For the eigenvalue λ = 3, reduction of the coefficient matrix of the system (A− λI)x = 0 leads to

[
0 0

8 −4

]

→

[
1 − 1

2

0 0

]

.

Hence,

E3 =

{

c

[
1

2

]
∣
∣ c ∈ IR

}

.

So the vector

[
1

2

]

spans the eigenspace E3.

For the eigenvalue λ = −1, reduction of the coefficient matrix of the system (A− λI)x = 0 leads to

[
4 0

8 0

]

→

[
1 0

0 0

]

.



Hence,

E−1 =

{

c

[
0

1

]
∣
∣ c ∈ IR

}

.

So the vector

[
0

1

]

spans the eigenspace E−1.

(b) For the eigenvalue λ = 4, reduction of the coefficient matrix of the system (A− λI)x = 0 leads to

[
6 −9

4 −6

]

→

[
1 − 3

2

0 0

]

.

Hence,

E4 =

{

c

[
3

2

]
∣
∣ c ∈ IR

}

.

So the vector

[
3

2

]

spans the eigenspace E4.

(c) There are no eigenspaces.

8.32 If Av = λv and v 6= 0, then

(A− cI)v = Av − cIv = λ v − c v = (λ − c)v.

Hence, v is an eigenvector for the matrix A− cI corresponding to the eigenvalue λ− c.

8.33 Note that

det(A− λI) = det(A− λI)T = det(AT − λI).

So det(A− λI) = 0 ⇐⇒ det(AT − λI) = 0. The solutions of the first equation are the eigenvalues of

the matrix A (if any) and the solutions of the second equation are the eigenvalues of the matrix AT

(if any).

9.1 We will prove that the zero vector is unique.

Suppose that 0 and 0′ are two zero vectors. Then, in view of property (3),

0 + 0′
︸︷︷︸

zero vector

= 0 and 0
︸︷︷︸

zero vector

+ 0′ = 0′.

So 0 = 0 + 0′ = 0′. Hence the two zero vectors are equal.

We will prove that each vector u in V has a unique opposite.

Assume that u
1
and u

2
are both opposites of u. Then, in view of property (4),

u+ u
1
= u+ u

2
= 0.

So

u
1

property 3

= u
1
+ 0 = u

1
+ (u+ u

2
)
property 2

= (u
1
+ u) + u

2

property 1

= (u+ u
1
) + u

2
= 0 + u

2

property 3

= u
2
.

Hence, the vectors u
1
and u

2
are equal.



9.2 Let u ∈ V and c ∈ IR and assume that c u = 0.

Suppose that c 6= 0 [if c = 0, then the proof is complete!]. Then

c u = 0 =⇒
1

c
·
(
c u

)
=

1

c
· 0.

However,
1

c
·
(
c u

) property 7

=
(1

c
· c
)
u = 1 · u

property 8

= u

and in view of Theorem 1(b),
1

c
· 0 = 0.

Hence, u = 0.

9.3 Because

(−1)u =





−u1

u2

u3



 and − u =





−u1

−u2

−u3



 ,

in general −u 6= (−1)u. In view of property (c) of Theorem 1 this implies that the set V is not a

vector space.

9.4 We will prove that the set V together with the operations defined in the exercise is a vector space.

First of all note that the non-empty set V is closed with respect to addition and scalar multiplication.

If

[
x

0

]

and

[
y

0

]

are in V , then

[
x

0

]

+

[
y

0

]

=

[
x+ y

0

]

is contained in V .

If

[
x

0

]

∈ V and c ∈ IR, then c

[
x

0

]

=

[
cx

0

]

∈ V .

Next we will check all the properties.

(1) According to the properties of real numbers,

[
x

0

]

+

[
y

0

]

=

[
x+ y

0

]

=

[
y + x

0

]

=

[
y

0

]

+

[
x

0

]

.

(2) According to the properties of real numbers,

[
x

0

]

+

([
y

0

]

+

[
z

0

])

=

[
x

0

]

+

[
y + z

0

]

=

[
x+ (y + z)

0

]

=

[
(x+ y) + z

0

]

=

[
x+ y

0

]

+

[
z

0

]

=

([
x

0

]

+

[
y

0

])

+

[
z

0

]

.

(3) Note that the vector

[
0

0

]

∈ V is the zero vector because

[
x

0

]

+

[
0

0

]

=

[
x+ 0

0

]

=

[
x

0

]

and, similarly,

[
0

0

]

+

[
x

0

]

=

[
x

0

]

.

(4) Note that the vector

[
−x

0

]

∈ V is the negative of the vector

[
x

0

]

:

[
x

0

]

+

[
−x

0

]

=

[
x+ (−x)

0

]

=

[
x− x

0

]

=

[
0

0

]

.



(5) According to the properties of real numbers,

c

([
x

0

]

+

[
y

0

])

= c

[
x+ y

0

]

=

[
c(x+ y)

0

]

=

[
cx+ cy

0

]

=

[
cx

0

]

+

[
cy

0

]

= c

[
x

0

]

+ c

[
y

0

]

.

(6) According to the properties of real numbers,

(c+ d)

[
x

0

]

=

[
(c+ d)x

0

]

=

[
cx+ dx

0

]

=

[
cx

0

]

+

[
dx

0

]

= c

[
x

0

]

+ d

[
x

0

]

.

(7) According to the properties of real numbers,

c

(

d

[
x

0

])

= c

[
dx

0

]

=

[
c(dx)

0

]

=

[
(cd)x

0

]

= (cd)

[
x

0

]

.

(8) According to the properties of real numbers,

1 ·

[
x

0

]

=

[
1 · x

0

]

=

[
x

0

]

.

Note that the fact that V is a subset of IR2 implies that it is sufficient to check the properties 3 and

4. Since the other properties are satisfied for the elements of IR2, they are certainly satisfied for the

elements of V .

9.7 Let A,B ∈ IM2×2 and k ∈ IR. Then

T (A+B) =






a11 + b11
...

a22 + b22




 =






a11
...

a22




+






b11
...

b22




 = T (A) + T (B)

T (kA) =






ka11
...

ka22




 = k






a11
...

a22




 = k · T (A).and

So the mapping T is linear.

The mapping T is one-to-one:

If T (A) = T (B), then








a11

a12

a21

a22







=








b11

b12

b21

b22







=⇒ a11 = b11, a12 = b12, a21 = b21 and a22 = b22 =⇒ A = B.

The mapping T is surjective:

If v ∈ IR4, then

T
([ v1 v2

v3 v4

])

= v.

9.9 (a) Let p, q ∈ IP2 and k ∈ IR. Say p(x) = a0 + a1x+ a2x
2 and q(x) = b0 + b1x+ b2x

2, where x ∈ IR.

Note that

(p+ q)(x) = a0 + b0 + (a1 + b1)x+ (a2 + b2)x
2.



So for the polynomial T (p+ q) it holds that for all x ∈ IR

T (p+ q)(x) = a0 + b0 + (a1 + b1)(x+ 1) + (a2 + b2)(x + 1)2

= a0 + a1(x+ 1) + a2(x+ 1)2 + b0 + b1(x+ 1) + b2(x+ 1)2

= T (p)(x) + T (q)(x),

or: T (p+ q) = T (p) + T (q).

Observe that

(k · p)(x) = ka0 + ka1x
2 + ka2x

2.

So for the polynomial T (k · p) it holds that for all x ∈ IR

T (k · p)(x) = ka0 + ka1(x+ 1) + ka2(x+ 1)2 = k[a0 + a1(x+ 1) + a2(x+ 1)2] = k · T (p),

or: T (k · p) = kT (p). So T is a linear mapping .


