8.22 (a) For any £k =0,1,2,...
My, = M[Nu] =N Mu=Ndu=Nu=u0,,.
(b) For any k=0,1,2,...

Muw,, = M[c Nu+d pFv] = ¢ NP Mu+d p" Mo =c A Xutep” po=c N utdp" o =w,,,.

8.28 We reduce, for the eigenvalue A = 1, the matrix A — AI:

3.0 1 0 4 1 0 0
A-I=|-2 0 0[—=|0 0 2|—=|0 0
-2 0 0 0 2 0 0 0

So for any solution of the system (A — Iz = 0 it holds that z; = z3 = 0. Hence, the vector

0

spans the eigenspace IE;.

We reduce, for the eigenvalue A\ = 2, the matrix A — \I:

2 0 1 2 0 1 2 0 1
A-2[=(-2 -1 O0|—-|0 -1 1|—=|0 1 -1
-2 0 -1 0 0 O 0 0 0
. . 2x1 = —13
So for any solution of the system (A — 2I)z = 0 it holds that . Hence, the vector
T2 = T3
-1
2
2
spans the eigenspace IEs.
We reduce, for the eigenvalue A = 3, the matrix A — AI:
1 0 1 1 0 1 1 0 1
A-3I=|-2 -2 0| —=]|0 =2 2| —=(0 1 -1
-2 0 -2 0 0 O 0 0 0
Z = -
So for any solution of the system (A — 3I)z = 0 it holds that { ! ° Hence, the vector
Ty = I3
-1
1
1

spans the eigenspace IEs.
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8.35 (a)

9.5

a
LetA:[

i
. Then
c d

a— A\ b
c d— A
= N —(a+d)A+ad—bc=0> N\ —tr(A)\ +det A = 0.

det(A)\I)O<:>det[ }0<:>(a)\)(d)\)bc()

Let A be an eigenvalue of an invertible matrix A.

If A =0 and v is an eigenvector corresponding to this eigenvalue, then v # 0 and Av = Av = 0. This
is in contradiction with the invertibility of the matrix A. Hence X\ # 0.

We have

Av=d v=—A"Av=A" D =—v=2A"v=—A"1v="0.

>| =

1
So X is an eigenvalue of the matrix A1,

Note that the entries in each row of the matrix A7 sum up to 1. Hence,

1 1
AT 1] =1-|1],
1 1

which proves that A = 1 is an eigenvalue of the matrix A”. Due to Exercise 33, A = 1 is also an

eigenvalue of the matrix A.

Note that

Because u-u =1 and uw-v = 0, it follows that
Au=A(u-w)u+pw uwv=Au

Since u has length one, u # 0. Therefore u is an eigenvector of the matrix A corresponding to the

eigenvalue A.

0 1
Note that W is not closed with respect to scalar multiplication: the matrix {1 0] is contained in

W but the matrix

is not an element of W.



9.6 We will show that the set

9.8 (a)

W= {f € F| £(1) = 0}

is a vector space.

Note that the set W is not empty because it contains the null function n defined by n(x) = 0 for all
r € R.

First of all we will show that the set W is closed under addition and scalar multiplication: if f € W,
geWand ce IR, then f+g€ W and cf € W.

Let f e W, g€ W and ¢ € R. Then f,g € IF, f(1) =0 and g(1) = 0.

Sof+gelF cf € IF and

(f+9)(1)=f1)+g(1)=0+0=0

and (ef)1)=c-f(1)=c-0=0.

Hence, f+ g€ W and c¢f € W.

Next we have to check whether the properties (1) up to (8) are satisfied!

Because TF is a vector space, as we may conclude from Example 3, the properties (1), (2), (5), (6),
(7) and (8) hold for the space W as well.

Furthermore, since the null function n is an element of the set W, property (3) is also satisfied.

If f is an element of the set W, then —f € IF and (—f)(1) = —f(1) = 0. By consequence, —f € W.
Property (4) is also satisfied.

Let A,B € IM,,x,, and k € R. Then

T(A+ B)=tr(A+ B) = zn:(aii +bi;) = Zn: ai; + Zn: bi; = tr(A) + tr(B) = T(A) + T(B)
and T(kA) =tr(kA) = zn:(k:aii) = kzn: a;; = ktr(A) = kT(A).

i=1 i=1
So the mapping T is linear.

The mapping 7' is not one-to-one:

(2 -o-n(l) 3]
The mapping T is surjective:

IfceR, thenT({; g]) —e

Let A, B € M,,,xn, and k € IR. Then

T(A+B)=(A+B)T = AT + BT =T(A) + T(B)

and T(kA) = (kAT = kAT = kT (A).

So the mapping T is linear.



The mapping 7' is one-to-one:

If A, B € M,,x, and T(A) = T(B), then AT = BT, Hence
A= AN =BT =B

The mapping 7' is surjective:

If C € M,,xm, then CT € M,,,«,, and

T7(cT) = (") =C.



