
8.22 (a) For any k = 0, 1, 2, . . .

Mv
k
= M

[

λku
]

= λk Mu = λk · λu = λk+1u = v
k+1.

(b) For any k = 0, 1, 2, . . .

Mw
k
= M

[

c λku+d µkv
]

= c λk Mu+d µk Mv = c λk ·λ u+c µk ·µ v = c λk+1u+d µk+1v = w
k+1.

8.28 We reduce, for the eigenvalue λ = 1, the matrix A− λI :

A− I =







3 0 1

−2 0 0

−2 0 0






→







1 0 1

3

0 0 2

3

0 0 2

3






→







1 0 0

0 0 1

0 0 0






.

So for any solution of the system (A− I)x = 0 it holds that x1 = x3 = 0. Hence, the vector







0

1

0







spans the eigenspace IE1.

We reduce, for the eigenvalue λ = 2, the matrix A− λI :

A− 2I =







2 0 1

−2 −1 0

−2 0 −1






→







2 0 1

0 −1 1

0 0 0






→







2 0 1

0 1 −1

0 0 0






.

So for any solution of the system (A− 2I)x = 0 it holds that

{

2x1 = −x3

x2 = x3

. Hence, the vector







−1

2

2







spans the eigenspace IE2.

We reduce, for the eigenvalue λ = 3, the matrix A− λI :

A− 3I =







1 0 1

−2 −2 0

−2 0 −2






→







1 0 1

0 −2 2

0 0 0






→







1 0 1

0 1 −1

0 0 0






.

So for any solution of the system (A− 3I)x = 0 it holds that

{

x1 = −x3

x2 = x3

. Hence, the vector







−1

1

1







spans the eigenspace IE3.



8.30 Let A =

[

a b

c d

]

. Then

det(A− λI) = 0 ⇐⇒ det

[

a− λ b

c d− λ

]

= 0 ⇐⇒ (a− λ) (d− λ)− bc = 0

⇐⇒ λ2 − (a+ d) λ+ ad− bc = 0 ⇐⇒ λ2 − tr(A)λ + detA = 0.

8.31 Let λ be an eigenvalue of an invertible matrix A.

If λ = 0 and v is an eigenvector corresponding to this eigenvalue, then v 6= 0 and Av = λ v = 0. This

is in contradiction with the invertibility of the matrix A. Hence λ 6= 0.

We have

Av = λv =⇒ A−1Av = A−1λv =⇒ v = λA−1v =⇒ A−1v =
1

λ
v.

So
1

λ
is an eigenvalue of the matrix A−1.

8.34 Note that the entries in each row of the matrix AT sum up to 1. Hence,

AT







1

1

1






= 1 ·







1

1

1






,

which proves that λ = 1 is an eigenvalue of the matrix AT . Due to Exercise 33, λ = 1 is also an

eigenvalue of the matrix A.

8.35 (a) Note that

AT = [λuuT + µ v vT ]T = λ[uuT ]T + µ[v vT ]T = λ
(

uT
)T

uT + µ
(

vT
)T

vT

= λuuT + µ v vT = A.

(b) Note that for any x ∈ IRn

Ax = λuuTx+ µ v vTx = λ (u · x)u+ µ (v · x) v.

Because u · u = 1 and u · v = 0, it follows that

Au = λ (u · u)u+ µ (v · u) v = λu.

Since u has length one, u 6= 0. Therefore u is an eigenvector of the matrix A corresponding to the

eigenvalue λ.

9.5 Note that W is not closed with respect to scalar multiplication: the matrix

[

0 1

1 0

]

is contained in

W but the matrix

2 ·

[

0 1

1 0

]

=

[

0 2

2 0

]

is not an element of W .



9.6 We will show that the set

W = {f ∈ IF| f(1) = 0}

is a vector space.

Note that the set W is not empty because it contains the null function n defined by n(x) = 0 for all

x ∈ IR.

First of all we will show that the set W is closed under addition and scalar multiplication: if f ∈ W ,

g ∈ W and c ∈ IR, then f + g ∈ W and cf ∈ W .

Let f ∈ W , g ∈ W and c ∈ IR. Then f, g ∈ IF, f(1) = 0 and g(1) = 0.

So f + g ∈ IF, cf ∈ IF and

(f + g)(1) = f(1) + g(1) = 0 + 0 = 0

(cf)(1) = c · f(1) = c · 0 = 0.and

Hence, f + g ∈ W and cf ∈ W .

Next we have to check whether the properties (1) up to (8) are satisfied!

Because IF is a vector space, as we may conclude from Example 3, the properties (1), (2), (5), (6),

(7) and (8) hold for the space W as well.

Furthermore, since the null function n is an element of the set W , property (3) is also satisfied.

If f is an element of the set W , then −f ∈ IF and (−f)(1) = −f(1) = 0. By consequence, −f ∈ W .

Property (4) is also satisfied.

9.8 (a) Let A,B ∈ IMn×n and k ∈ IR. Then

T (A+B) = tr(A+B) =

n
∑

i=1

(aii + bii) =

n
∑

i=1

aii +

n
∑

i=1

bii = tr(A) + tr(B) = T (A) + T (B)

T (kA) = tr(kA) =

n
∑

i=1

(kaii) = k

n
∑

i=1

aii = k tr(A) = k T (A).and

So the mapping T is linear.

The mapping T is not one-to-one:

T
(

[

0 0

0 0

]

)

= 0 = T
(

[

0 1

0 0

]

)

.

The mapping T is surjective:

If c ∈ IR, then T
(

[

c 0

0 0

]

)

= c.

(b) Let A,B ∈ IMm×n and k ∈ IR. Then

T (A+ B) = (A+B)T = AT +BT = T (A) + T (B)

T (kA) = (kA)T = kAT = kT (A).and

So the mapping T is linear.



The mapping T is one-to-one:

If A,B ∈ IMm×n and T (A) = T (B), then AT = BT . Hence

A =
(

AT
)T

=
(

BT
)T

= B.

The mapping T is surjective:

If C ∈ IMn×m, then CT ∈ IMm×n and

T (CT ) =
(

CT
)T

= C.


