8.22 (a) For any $k=0,1,2, \ldots$

$$
M \underline{v}_{k}=M\left[\lambda^{k} \underline{u}\right]=\lambda^{k} M \underline{u}=\lambda^{k} \cdot \lambda \underline{u}=\lambda^{k+1} \underline{u}=\underline{v}_{k+1} .
$$

(b) For any $k=0,1,2, \ldots$

$$
M \underline{w}_{k}=M\left[c \lambda^{k} \underline{u}+d \mu^{k} \underline{v}\right]=c \lambda^{k} M \underline{u}+d \mu^{k} M \underline{v}=c \lambda^{k} \cdot \lambda \underline{u}+c \mu^{k} \cdot \mu \underline{v}=c \lambda^{k+1} \underline{u}+d \mu^{k+1} \underline{v}=\underline{w}_{k+1} .
$$

8.28 We reduce, for the eigenvalue $\lambda=1$, the matrix $A-\lambda I$:

$$
A-I=\left[\begin{array}{rrr}
3 & 0 & 1 \\
-2 & 0 & 0 \\
-2 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & \frac{1}{3} \\
0 & 0 & \frac{2}{3} \\
0 & 0 & \frac{2}{3}
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] .
$$

So for any solution of the system $(A-I) \underline{x}=\underline{0}$ it holds that $x_{1}=x_{3}=0$. Hence, the vector

$$
\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

spans the eigenspace \mathbb{E}_{1}.
We reduce, for the eigenvalue $\lambda=2$, the matrix $A-\lambda I$:

$$
A-2 I=\left[\begin{array}{rrr}
2 & 0 & 1 \\
-2 & -1 & 0 \\
-2 & 0 & -1
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
2 & 0 & 1 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
2 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

So for any solution of the system $(A-2 I) \underline{x}=\underline{0}$ it holds that $\left\{\begin{aligned} 2 x_{1} & =-x_{3} \\ x_{2} & =x_{3}\end{aligned}\right.$. Hence, the vector

$$
\left[\begin{array}{r}
-1 \\
2 \\
2
\end{array}\right]
$$

spans the eigenspace \mathbb{E}_{2}.
We reduce, for the eigenvalue $\lambda=3$, the matrix $A-\lambda I$:

$$
A-3 I=\left[\begin{array}{rrr}
1 & 0 & 1 \\
-2 & -2 & 0 \\
-2 & 0 & -2
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & -2 & 2 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

So for any solution of the system $(A-3 I) \underline{x}=\underline{0}$ it holds that $\left\{\begin{array}{l}x_{1}=-x_{3} \\ x_{2}=x_{3}\end{array}\right.$.Hence, the vector

$$
\left[\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right]
$$

spans the eigenspace \mathbb{E}_{3}.
8.30 Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then

$$
\begin{aligned}
\operatorname{det}(A-\lambda I)=0 & \Longleftrightarrow \operatorname{det}\left[\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right]=0 \Longleftrightarrow(a-\lambda)(d-\lambda)-b c=0 \\
& \Longleftrightarrow \lambda^{2}-(a+d) \lambda+a d-b c=0 \Longleftrightarrow \lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det} A=0
\end{aligned}
$$

8.31 Let λ be an eigenvalue of an invertible matrix A.

If $\lambda=0$ and \underline{v} is an eigenvector corresponding to this eigenvalue, then $\underline{v} \neq \underline{0}$ and $A \underline{v}=\lambda \underline{v}=\underline{0}$. This is in contradiction with the invertibility of the matrix A. Hence $\lambda \neq 0$.

We have

$$
A \underline{v}=\lambda \underline{v} \Longrightarrow A^{-1} A \underline{v}=A^{-1} \lambda \underline{v} \Longrightarrow \underline{v}=\lambda A^{-1} \underline{v} \Longrightarrow A^{-1} \underline{v}=\frac{1}{\lambda} \underline{v}
$$

So $\frac{1}{\lambda}$ is an eigenvalue of the matrix A^{-1}.
8.34 Note that the entries in each row of the matrix A^{T} sum up to 1. Hence,

$$
A^{T}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=1 \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

which proves that $\lambda=1$ is an eigenvalue of the matrix A^{T}. Due to Exercise $33, \lambda=1$ is also an eigenvalue of the matrix A.
8.35 (a) Note that

$$
\begin{aligned}
A^{T} & =\left[\lambda \underline{u} \underline{u}^{T}+\mu \underline{v} \underline{v}^{T}\right]^{T}=\lambda\left[\underline{u} \underline{u}^{T}\right]^{T}+\mu\left[\underline{v} \underline{v}^{T}\right]^{T}=\lambda\left(\underline{u}^{T}\right)^{T} \underline{u}^{T}+\mu\left(\underline{v}^{T}\right)^{T} \underline{v}^{T} \\
& =\lambda \underline{u} \underline{u}^{T}+\mu \underline{v} \underline{v}^{T}=A .
\end{aligned}
$$

(b) Note that for any $\underline{x} \in \mathbb{R}^{n}$

$$
A \underline{x}=\lambda \underline{u} \underline{u}^{T} \underline{x}+\mu \underline{v} \underline{v}^{T} \underline{x}=\lambda(\underline{u} \cdot \underline{x}) \underline{u}+\mu(\underline{v} \cdot \underline{x}) \underline{v} .
$$

Because $\underline{u} \cdot \underline{u}=1$ and $\underline{u} \cdot \underline{v}=0$, it follows that

$$
A \underline{u}=\lambda(\underline{u} \cdot \underline{u}) \underline{u}+\mu(\underline{v} \cdot \underline{u}) \underline{v}=\lambda \underline{u} .
$$

Since \underline{u} has length one, $\underline{u} \neq \underline{0}$. Therefore \underline{u} is an eigenvector of the matrix A corresponding to the eigenvalue λ.
9.5 Note that W is not closed with respect to scalar multiplication: the matrix $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ is contained in W but the matrix

$$
2 \cdot\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right]
$$

is not an element of W.
9.6 We will show that the set

$$
W=\{f \in \mathbb{F} \mid f(1)=0\}
$$

is a vector space.
Note that the set W is not empty because it contains the null function n defined by $n(x)=0$ for all $x \in \mathbb{R}$.

First of all we will show that the set W is closed under addition and scalar multiplication: if $f \in W$, $g \in W$ and $c \in \mathbb{R}$, then $f+g \in W$ and $c f \in W$.
Let $f \in W, g \in W$ and $c \in \mathbb{R}$. Then $f, g \in \mathbb{F}, f(1)=0$ and $g(1)=0$.
So $f+g \in \mathbb{F}, c f \in \mathbb{F}$ and

$$
(f+g)(1)=f(1)+g(1)=0+0=0
$$

and

$$
(c f)(1)=c \cdot f(1)=c \cdot 0=0
$$

Hence, $f+g \in W$ and $c f \in W$.
Next we have to check whether the properties (1) up to (8) are satisfied!
Because \mathbb{F} is a vector space, as we may conclude from Example 3, the properties (1), (2), (5), (6), (7) and (8) hold for the space W as well.

Furthermore, since the null function n is an element of the set W, property (3) is also satisfied.
If f is an element of the set W, then $-f \in \mathbb{F}$ and $(-f)(1)=-f(1)=0$. By consequence, $-f \in W$. Property (4) is also satisfied.
9.8 (a) Let $A, B \in \mathbb{M}_{n \times n}$ and $k \in \mathbb{R}$. Then

$$
\begin{aligned}
& T(A+B)=\operatorname{tr}(A+B)=\sum_{i=1}^{n}\left(a_{i i}+b_{i i}\right)=\sum_{i=1}^{n} a_{i i}+\sum_{i=1}^{n} b_{i i}=\operatorname{tr}(A)+\operatorname{tr}(B)=T(A)+T(B) \\
& \text { and } \quad T(k A)=\operatorname{tr}(k A)=\sum_{i=1}^{n}\left(k a_{i i}\right)=k \sum_{i=1}^{n} a_{i i}=k \operatorname{tr}(A)=k T(A) \text {. }
\end{aligned}
$$

So the mapping T is linear.
The mapping T is not one-to-one:

$$
T\left(\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right)=0=T\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\right)
$$

The mapping T is surjective:
If $c \in \mathbb{R}$, then $T\left(\left[\begin{array}{ll}c & 0 \\ 0 & 0\end{array}\right]\right)=c$.
(b) Let $A, B \in \mathbb{M}_{m \times n}$ and $k \in \mathbb{R}$. Then

$$
T(A+B)=(A+B)^{T}=A^{T}+B^{T}=T(A)+T(B)
$$

and

$$
T(k A)=(k A)^{T}=k A^{T}=k T(A)
$$

So the mapping T is linear.

The mapping T is one-to-one:
If $A, B \in \mathbb{M}_{m \times n}$ and $T(A)=T(B)$, then $A^{T}=B^{T}$. Hence

$$
A=\left(A^{T}\right)^{T}=\left(B^{T}\right)^{T}=B
$$

The mapping T is surjective:
If $C \in \mathbb{M}_{n \times m}$, then $C^{T} \in \mathbb{M}_{m \times n}$ and

$$
T\left(C^{T}\right)=\left(C^{T}\right)^{T}=C
$$

